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Abstract
I have developed a method for measuring temperature in range of tens to hundreds
of millikelvins. The method uses a quantum mechanical tarnsmon device as the
thermometer. The method is based on the fact that at the thermodynamical equi-
librium the state of a quantum mechanical system is distributed according to the
Boltzmann distribution. By fitting the Boltzmann distribution to the measured state
distribution, one can determine the temperature of the system.

The state distribution of the system is measured by applying a measurement pulse
and measuring the reflected pulse. The measurement pulse collapses the quantum
mechanical state to one of the eigenstates of the Hamiltonian of the system. The
energy level of the eigenstate determines the properties of the reflected measurement
pulse.

In practice the measured pulse is very weak and noisy. To improve the signal-
to-noise ratio, the measurement is repeated multiple times and the response signals
are averaged. Each state of the system produces a different reflected pulse, and
averaging multiple measurements loses the information of the distribution of those
pulses and, by proxy, the states. To recover the information of the state distribution,
the system is prepared in different states before the measurement. Because we know
how the preparation affects the state, we can solve the state distribution from this
set of measurements. We can then use the Boltzmann distribution to solve for the
temperature of the sample.

The method has been developed using a transmon qutrit, but it works also
for other kinds of quantum mechanical systems. The method produces plausible
results for the temperatures, but not all sources of errors could be determined. More
measurements are needed to unravel these error sources.
Keywords Quantum mechanics, Transmon, Metrology, Temperature, Thermometer,

Qutrit
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Tiivistelmä
Olen kehittänyt kvanttimekaniikkaan perustuvan menetelmän lämpötilan mittaami-
seen. Menetelmän avulla voidaan mitata lämpötiloja kymmenien ja satojen kelvinien
kokoluokassa. Menetelmä perustuu siihen, että kvanttimekaanisen järjestelmän mie-
hitystodennäköisyydet ovat tasapainotilassa Boltzmann-jakautuneet. Mitattuihin
miehitystodennäköisyyksiin voidaan sovittaa Boltzmannin jakauma, mistä saadaan
määritettyä järjestelmän lämpötila.

Järjestelmän miehitystila mitataan kohdistamalla järjestelmään mittauspulssi
ja mittaamalla mittauspulssin heijastus järjestelmästä. Mittauspulssi romauttaa
järjestelmän kvanttimekaanisen tilan yhteen sen Hamiltonin operaattorin ominais-
tiloista. Ominaistilan energia määrää millaisen heijastuksen järjestelmä tuottaa
mittauspulssille.

Käytännössä mitattava heijastunut pulssi on hyvin heikkotehoinen ja kohinainen,
joten signaali-kohinasuhteen parantamiseksi mittaus toistetaan useasti ja signaalit
keskiarvoistetaan. Keskiarvoistamalla menetetään tieto järjestelmän miehitystoden-
näköisyyksien jakaumasta. Miehitysjakauma voidaan kuitenkin selvittää valmistele-
malla järjestelmä erilaisiin tiloihin ennen mittausta, jolloin jokaisesta eri alkutilasta
suoritetusta mittauksesta syntyy erilainen keskiarvoistettu heijastussignaali. Tästä
syntyvän yhtälöryhmän ratkaisuna saadaan järjestelmän miehitystodennäköisyyksien
suhde, josta saadaan edelleen ratkaistua lämpötila Boltzmannin jakauman avulla.

Mittausmenetelmä on kehitetty käyttämällä transmoni-kutrittia, mutta se yleistyy
myös muille kvanttimekaanisille laitteille. Menetelmä tuottaa uskottavia tuloksia
lämpötilalle, mutta kaikkia häiriölähteitä ei pystytty selvittämään tutkimuksessa.
Näiden häiriölähteiden selvittämiseksi tarvitaan lisää mittauksia.
Avainsanat Kvanttimekaniikka, Transmoni, Metrologia, Lämpötila, Lämpömittari,

Kutritti
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Symbols and abbreviations

Symbols
k Boltzmann constant
ρ Charge density
q Charge of a Cooper pair
EC Charging energy of transmon
⟨ϕ| Conjugate wave function
I Electric current
EJ Energy of Josephson junction
|ϕi⟩ Hamiltonian basis wave function
Φ Magnetic flux
A Magnetic vector potential
m Mass
x0, x1, x2, y0, y1, y2 Measurement signal
∆φa Phase difference along path a
J Probability current
P Probability density
h̄ Reduced Planck’s constant
φi Response signal corresponding to |ϕi⟩
θ, ν Phase
T Temperature
ω01 Transition frequency between ground state and first exited

state
|ϕ⟩ Wave function

Operators
∇· Divergence
ḟ First time derivative of f
∇ Gradient
Ĥ Hamiltonian operator∫︁

a Integral along path a
n̂ Number of Cooper pairs transferred over Josephson junction
∂f
∂t

Partial differential of f w.r.t. t
φ̂ Phase difference between superconductors
Var Variance

Abbreviations
CPB Cooper pair box
JJ Josephson junction
SQUID Superconducting quantum interference device
Transmon Transmission-line shunted plasma oscillation qubit
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1 Introduction
Quantum mechanics have gained a lot of attention in the media in the recent
years, mainly due to the ground-breaking results in the quantum computing like
achieving quantum supremacy [1]. Many of these results are direct consequences
of other advancements with the quantum mechanics, like qubit designs with longer
decoherence times [2]. These advancements are applicable to a wide range of other
applications too. One such application is introduced in this thesis: a thermometer
based on a transmon qutrit.

The thermometer developed in this thesis can be used to measure temperatures
in the range of dozens to hundreds of millikelvins. Most quantum experiments
and devices, like quantum computers, operate at these temperatures as higher
temperatures would cause the quantum state to decay too quickly. The method in
this thesis has been developed and tested using a transmon qutrit, but it should be
applicable to be used with other quantum devices. This makes it possible to measure
the temperature of many quantum systems with little to no additional hardware,
allowing one to estimate the decoherence of the system.

The method presented in this thesis works by measuring the state distribution
of a fully decohered, three-state transmon system. The state distribution follows
the Boltzmann distribution whose temperature dependency is used to infer the
temperature of the system. Only the energies of the states need to be known for the
method to work.

The method has been implemented using Matlab, and the implementation has
been used to evaluate the results by comparing the determined temperature at
different driving frequencies of the transmon device. The measurements in this study
were done at Aalto University by Andrey Lebedev using a transmon device described
in [3].

Section 2 explains the theoretical background for the study and gives a short
description on how a transmon device works. Section 3 introduces the measurement
setup and the data analysis methods. Section 4 presents the results, and Section 5
draws the conclusions of the method. Appendix B presents a derivation for Deming
regression without an intercept parameter.
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2 Background
The quantum mechanical device used in this study is a transmon qutrit [2]. The
transmon device is based on the Cooper pair box qubit, but it has been engineered
to have a longer dephasing time than a traditional charge qubit. At the heart of a
transmon device is a Josephson junction (JJ) [4] consisting of two superconducting
wires separated by a thing layer of non-superconducting material like a metal or an
insulator. When two Josephson junctions are connected in parallel, they show inter-
ference behavior and form a superconducting quantum interference device (SQUID)
[5]. In the rest of this section, I introduce the theory behind these concepts to the
level needed to understand the measurement setup and method developed in this
study.

2.1 Superconductivity
To fully understand how a Josephson junction works, one needs to have at least a
basic understanding of how materials transfer from having a resistance to become
superconductive. Electrical current in a material is exerted by a potential difference
inside the material; negative charges move towards the higher potential and positive
charges towards the lower potential. In solids the atomic nuclei form a rigid lattice,
leaving only the freely moving valence electrons to conduct current. During their
transport in the solid, electrons scatter from the stationary nuclei by exchanging their
energy with the vibrations of the lattice. These scattering events are the microscopic
reason for the macroscopic effect we call electrical resistance.

An electron in a solid attracts the positively charged nuclei of the lattice the
tiniest of amount. The attracted positive charges raise the potential around the
electron, causing other electrons to be attracted closer to the electron. It happens
that the electrons have a lower energy level when they are attracted in this way,
compared to the electrons being far apart, and thus the electrons favor to be paired
up like this. At sufficiently low temperatures, this energy difference is large enough
that the kinetic energy of the electrons can’t break the pair apart, and the state is
bound. This kind of pair of electrons is called a Cooper pair. [6]

Electrons have spin 1
2 and are thus fermions. The Cooper pair, on the other hand,

is made of two electrons and thus has spin of either 0 or 1, making the Cooper pair
a boson. Bosons follow the Bose-Einstein statistics, and especially are not subject
to the Pauli exclusion principle, which allows multiple Cooper pairs to exist in the
same quantum state. At low temperatures, the bosons actually tend the same lowest
energy state, and getting them to any other state requires energy. This means that
most of the Cooper pairs move in the same direction once they are started, and
continue moving until an external potential is applied. Resistance causing scattering
from atomic nuclei is unlikely due to Bose-Einstein statistics. This phenomenon of
resistance-free electric conduction is called superconductivity.

Let’s consider a simply connected superconductor as a quantum mechanical device
with wave function |ϕ(r, t)⟩. The probability of finding the Cooper pair at any given
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location is given by
P (r, t) = ⟨ϕ(r, t)|ϕ(r, t)⟩ .

It shows [7] that the change of this probability can actually be written using probability
current J:

∂P

∂t
= −∇ · J (1)

For a large number of number of Cooper pairs, this probability current density
actually becomes the electric current density.

Now, because J is actually the electric current density, we know that P must be
proportional to the charge density ρ, and thus |ϕ⟩ must be proportional to √

ρ. We
can thus write

|ϕ⟩ = √
ρeiθ

for some phase θ. Using this notation, the current density J can now be written as

J = ℏ
m

(︃
∇θ − q

ℏ
A

)︃
ρ.

2.2 Josephson junction

Figure 1: A Josephson junction. The dark gray parts are superconductors which are
separated by the light gray insulator.

The basis for many charge qubit based quantum devices is a Josephson junction.
Josephson junction is made of two blobs of superconductive material separated by
a thin strip of insulator or a non-superconductive material. The basic structure of
a Josephson junction is shown in Figure 1. The thin strip of insulator makes it
possible for the Cooper pairs to tunnel from one side of the junction to the other.
The following derivation of the properties of Josephson junction is based on [7].

The contacts between the superconductive pieces of a Josephson junction are
so small that let’s approximate them as point-like. Each side of the junction has a
wave function, |ϕ1⟩ and |ϕ2⟩, describing its behavior. As they are connected via a
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the junction, their time evolution is described by

iℏ
∂ |ϕ1⟩

∂t
= U1 |ϕ1⟩ + K |ϕ2⟩

iℏ
∂ |ϕ2⟩

∂t
= U2 |ϕ2⟩ + K |ϕ1⟩

where Ui is the energy of the lowest state and Ki is a cross term coupling the
superconducting regions together via tunneling Cooper pairs. If we apply a voltage
V across the junction, we can denote U1 − U2 = qV where q is the charge of a Cooper
pair. This way we can write

iℏ
∂ |ϕ1⟩

∂t
= qV

2 |ϕ1⟩ + K |ϕ2⟩

iℏ
∂ |ϕ2⟩

∂t
= −qV

2 |ϕ2⟩ + K |ϕ1⟩ .

(2)

Because |ϕ1⟩ and |ϕ2⟩ are wave functions of superconductor, we may write them
as

|ϕi⟩ = √
ρie

iθi

where ρi is the charge density of the superconductor, and θi is the phase of |ϕi⟩.
Writing the wave functions in the equation (2) in this form allows us to denote
θ2 − θ1 = δ. By separating real and imaginary parts from each others, we can solve

ρ̇1 = 2K

ℏ
√

ρ2ρ1 sin δ

ρ̇2 = −2K

ℏ
√

ρ2ρ1 sin δ

θ̇1 = −K

ℏ

√︄
ρ2

ρ1
cos δ − qV

2ℏ

θ̇2 = −K

ℏ

√︄
ρ1

ρ2
cos δ + qV

2ℏ .

These equations describe how the wave functions would start to change if there was
no voltage across the junction. Because I = ∂ρ

∂t
= ρ̇, we can write

I = 2K

ℏ
√

ρ2ρ1 sin δ.

By remembering that θ2 − θ1 = δ, we can write

δ̇ = θ̇2 − θ̇1 = qV

ℏ

and thus
δ(t) = δ0 + q

ℏ

∫︂ t

t0
V (t)dt.
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Let’s finally denote I0 = 2K
ℏ

√
ρ2ρ1 to gain

I = I0 sin δ (3)

δ(t) = δ0 + q

ℏ

∫︂
V (t)d(t) (4)

which are the equations describing the physics of a Josephson junction.
The main takeaway from these equations is that when there is a non-zero DC

voltage across the junction, the current oscillates with frequency q
h
V , and when there

is no voltage across the junction, there is some current flowing through the junction
with an amplitude between −I0 and I0.

2.3 SQUID

b

a

Figure 2: A superconducting quantum interference device, SQUID. The gaps in the
ring are the two Josephson junctions. Two integration paths, a and b, are marked in
the picture. Each one goes through one of the Josephson junctions.

Two Josephson junctions can be combined in parallel to form a superconducting
quantum interference devices, abbreviated SQUID [5]. The name comes from the
fact that the two Josephson junctions show behavior similar to the Young’s double
slit interference experiment [8]. Figure 2 shows the structure of a SQUID loop.

Let’s consider the current flowing through the SQUID along two paths: path a
goes through the upper Josephson junction and path b goes through the lower one.
Let’s also apply a magnetic potential A to the device. Now the phase difference
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along the path a is
∆φa = δa + q

ℏ

∫︂
a

A · ds

and along path b
∆φb = δb + q

ℏ

∫︂
b
A · ds.

The δ term comes from the Josephson junction, and the integral term comes from
the equation (1) which equates the phase θ and the vector potential A when the
current density around the loop J = 0.

The phase difference ∆φ must be the same along both paths a and b. Thus when
these two equations are subtracted from each others, we get

δb − δa = q

ℏ

∮︂
A · ds = q

ℏ
Φ

as the vector potential along a closed loop is equal to the magnetic flux enclosed by
the loop. By denoting

δa = δ0 − q

2ℏΦ δb = δ0 + q

2ℏΦ

and using equation (3) we get the total current through the SQUID loop

I = I0

(︃
sin

(︃
δ0 − q

2ℏΦ
)︃

+ sin
(︃

δ0 + q

2ℏΦ
)︃)︃

= 2I0 sin δ0 cos qΦ
2ℏ .

The base phase across the junction δ0 can’t be directly controlled, but it is known
that sin δ0 can reach a maximum value of 1. The equation also shows that the current
through the SQUID loop varies as a function of the flux Φ through the loop. This
makes SQUID loops useful in high-sensitivity magnetometers, and they can be made
to have achieve sensitivity of 0.1 pT [5].

2.4 Transmon
The quantum mechanical device used in this study is a transmission-line shunted
plasma oscillation qubit, or a transmon for short [2]. It is one of the most studied
quantum devices due to its long coherence time which is needed for creating efficient
quantum computers [9]. The long coherence times make transmon devices useful
also for other quantum applications, and one of such applications is measuring the
temperature of a given sample.

A transmon device is made of a SQUID loop or a single Josephson junction
shunted by a large capacitor. The basic structure is shown in Figure 3. This
structure is similar to a Cooper pair box qubit (CPB) design, and their Hamiltonians
have actually identical form [2]

Ĥ = 4EC(n̂ − ng)2 − EJ cos φ̂. (5)
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Cshunt EJ

Cext

R

Figure 3: Equivalent circuit of Transmon device. The SQUID loop consists of the two
Josephson junctions (the boxes with crosses) on the right. The shunting capacitor
Cshunt is on the left. The circuit is capacitively connected to the surroundings, shown
here as Cext. Based on circuit diagram in [3].

Here n̂ denotes the number of Cooper pairs transferred over the Josephson junction,
and φ̂ denotes the phase difference between superconductors. EC is the charging
energy of the transmon, and EJ is the energy of the Jospehson junctions. The
charging energy EC can be lowered by increasing the capacitance of the shunting
capacitor Cshunt.

A typical CPB qubit is operated at EJ ≈ EC , while a transmon is operated in
the transmon regime EJ ≫ EC . Figure 4 shows the three lowest eigenenergies of
(5) for different values of EJ/EC . The small charging energy caused by the large
shunting capacitor smoothens the energy bands of the transmon and makes it less
susceptible to fluctuations of charge. This also means that the device can’t be driven
by variating the charge, but microwaves are needed to excite the system into other
states. The transition frequency of the transmon device can be controlled by varying
the magnetic flux through the SQUID loop.

The energy levels of transmon are anharmonic, meaning that the transition
frequency between adjacent energy levels becomes smaller as the energy increases.
The difference between the 0-1 transition frequency, ω01, and the 1-2 transition
frequency, ω12, is ω01 − ω12 = EC/h. This quantity is called anharmonicity of the
transmon. It is important that the anharmonicity is non-zero because it allows us to
differentiate between the 0-1 transition and 1-2 transition when driving the state of
the transmon.

In this study, a transmon device is used as a three-state quantum mechanical
system, qutrit, in contrast to a two-state system, qubit. The state of the qutrit
can be presented as a superpositions of the three lowermost eigenstates |ϕi⟩ of the
Hamiltonian operator Ĥ. Any pure state |ϕ⟩ of the transmon device can thus be
written in the form

|ϕ⟩ = α0 |ϕ0⟩ + α1 |ϕ1⟩ + α2 |ϕ2⟩

where αi are the probability amplitudes of the states such that |αi|2 = pi and
p0 + p1 + p2 = 1.

The state of the transmon device can be altered using so-called Rabi oscillations.
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Figure 4: Three lowest eigenenergies of (5) plotted against the offset charge ng for
different values of EJ/EC . The plots are normalized such that the zero point of
energy is at the lowest point of m = 0 level, and the energy of the first exited state
is 1 at the degeneracy point ng = 1/2.

When a tuned microwave field with frequency ωd close to the state transition frequency
ω01 is applied to the sample, the probability amplitudes α0 and α1 start to oscillate.
By selecting length of the microwave pulse correctly, the probability amplitudes α0
and α1 of a pure state can be swapped such that the new state of the transmon is

|ϕ′⟩ = α1 |ϕ0⟩ + α0 |ϕ1⟩ + α2 |ϕ2⟩ .

This kind of pulse is called a π01 pulse, and a similar pulse π12 exists also for the 1-2
transition. For more complete introduction to Rabi oscillations with transmon, see
[3]
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3 Methods
It is well known that the state of a quantum mechanical system at the thermodynamic
equilibrium is distributed according to the Boltzmann distribution

pi ∝ exp(−Ei/kT ) (6)

where pi is the occupation probability of the given state, Ei is the energy of the ith

state, k is the Boltzmann constant, and T is the temperature of the system. When
the energy of the system is measured, the state collapses to one of the basis states |ϕi⟩
of the Hamiltonian (5), in proportion to the Boltzmann distribution. An interesting
consequence of this, and the fact that the Boltzmann distribution is dependent on
the temperature of the system, is that if we could experimentally measure the state
distribution pi of the system, we could use that to determine its temperature T .

3.1 Measurement setup
A transmon, described in Section 2.4, is used as the quantum mechanical system
in this study. The transition frequency of the transmon can be adjusted using the
magnitude of magnetic flux passing through the SQUID loop. This allows repeating
the measurement with multiple transition frequencies and to compare the results
between measurements. The temperature measured at different transition frequencies
should be identical.

At the start and between the measurements, the transmon sample is left to relax
to its equilibrium state which can be written using (6) as

ρ = p0 |ϕ0⟩ ⟨ϕ0| + p1 |ϕ1⟩ ⟨ϕ1| + p2 |ϕ2⟩ ⟨ϕ2| . (7)

The time given for relaxation is many times longer than the average coherence time
of the used transmon device to ensure that the system reaches its equilibrium state.
Once the equilibrium state has been reached, the state may be permuted into another
using the π pulses. For example applying π01 pulse to the state above produces

p1 |ϕ0⟩ ⟨ϕ0| + p0 |ϕ1⟩ ⟨ϕ1| + p2 |ϕ2⟩ ⟨ϕ2| .

Up to three pulses are used to reach the wanted state, after which the state is
measured. The measurement is done by sending a 2 µs measurement pulse and
measuring the response.

Let’s denote the response pulse corresponding to basis state |ϕi⟩ as φi. The
act of measuring the state collapses the quantum state into one of its basis states
|ϕi⟩, and thus the response signal is one of φi. To reduce the noise produces by
the amplification of the measurement signal, the measurement is repeated 60 000
times. The averaged response signal has response signals φi of the basis states in the
same proportion as the transmon device is populating its basis states |ϕi⟩. Thus the
measurement of (7) would give

x0(t) = p0φ0(t) + p1φ1(t) + p2φ2(t).
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For simplicity the dependency of the signals on time t won’t be explicitly written
from this point onwards.

The equilibrium state shown in (7) can be permuted into six different states
before the measurement by applying different sequences of π pulses. Table 1 show
the π pulse sequences and the signals they produce. The xi and yi signals differ only
in that yi signal has one additional π12 pulse applied before other pulses.

Table 1: Different π pulse sequences, the corresponding states, and the averaged
signals signals they produce.

Pulse
sequence State Signal
no pulse p0 |ϕ0⟩ ⟨ϕ0| + p1 |ϕ1⟩ ⟨ϕ1| + p2 |ϕ2⟩ ⟨ϕ2| x0 = p0φ0 + p1φ1 + p2φ2
π01 p1 |ϕ0⟩ ⟨ϕ0| + p0 |ϕ1⟩ ⟨ϕ1| + p2 |ϕ2⟩ ⟨ϕ2| x1 = p1φ0 + p0φ1 + p2φ2
π01π12 p1 |ϕ0⟩ ⟨ϕ0| + p2 |ϕ1⟩ ⟨ϕ1| + p0 |ϕ2⟩ ⟨ϕ2| x2 = p1φ0 + p2φ1 + p0φ2
π12 p0 |ϕ0⟩ ⟨ϕ0| + p2 |ϕ1⟩ ⟨ϕ1| + p1 |ϕ2⟩ ⟨ϕ2| y0 = p0φ0 + p2φ1 + p1φ2
π12π01 p2 |ϕ0⟩ ⟨ϕ0| + p0 |ϕ1⟩ ⟨ϕ1| + p1 |ϕ2⟩ ⟨ϕ2| y1 = p2φ0 + p0φ1 + p1φ2
π12π01π12 p2 |ϕ0⟩ ⟨ϕ0| + p1 |ϕ1⟩ ⟨ϕ1| + p0 |ϕ2⟩ ⟨ϕ2| y2 = p2φ0 + p1φ1 + p0φ2

Figure 5 shows the measured signals in one of the measurement. The signal of
the equilibrium state, x1, is shown as is while the other measurements are shown
relative to that signal. This is done to visualize the small differences between the
signals which would be otherwise difficult to see. These differences have amplitude
of only 2 % to 3 % of the total signal amplitude.

The data used in this study is measured at 41 different frequencies between
5.54 GHz and 6.22 GHz. The measurements are done in three batches, each batch in
decreasing order. The first batch is from 5.74 GHz to 5.59 GHz, the second is from
6.22 GHz to 5.78 GHz, and the last is from 5.58 GHz to 5.54 GHz. The measurement
is repeated 16 times at each frequency.

Sampling rate of 1 GHz is used in the measurements. The response signal is
measured for little over 2 µs giving 2043 samples for each measurement. Only samples
60 to 500 are used in the data analysis due to the first around 50 first samples being
close to 0, and because the state being measured relaxes with the time and thus the
last samples have more error than the first ones.

3.2 Data analysis methods
Once the averaged signals described in Table 1 are measured, they need to be analyzed
in order to get the temperature of the sample. To do this, we need to first solve for
the occupation probabilities pi of the states and then use the Boltzmann distribution
(6) to convert those probabilities into temperatures.

Solving the temperature directly from these equations is difficult due to the
unknown response signals φi of each basis state |ϕi⟩, so instead of solving the
probabilities directly, we examine the differences of the measurement signals, for
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Figure 5: Examples of measurement signals. The first plot shows one of the measured
signals (x1). The rest of the plots show how the other measurement signals differ
from the first one. This is done to better show the small differences between the
measured signals.

example

x2 − y2 = (p1 − p2) (φ0 − φ1)
x0 − x1 = (p0 − p1) (φ0 − φ1)
y0 − y1 = (p0 − p2) (φ0 − φ1) .

These equations have the same difference of the unknown response signals φ0 − φ1 as
factor on the right hand side. This hints us to divide the equations with each others
to dispose the unknown response signals of the basis states, leaving behind only the
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measured signals xi, yi, and the probabilities pi we desires to solve:

p1 − p2

p0 − p1
= x2 − y2

x0 − x1
p1 − p2

p0 − p2
= x2 − y2

y0 − y1
p0 − p1

p0 − p2
= x0 − x1

y0 − y1
.

(8)

We can write these quotients of differences of signals for other pairs of signals and
replace the pi in the equation with the Boltzmann distribution (6), noting that the
constant factor cancels out, to get

p1 − p2

p0 − p1
= exp(ω01/kT ) − exp(ω02/kT )

1 − exp(ω01/kT ) = x2 − y2

x0 − x1
= x1 − y1

y0 − x2
= x0 − y0

y1 − y2
= a

p1 − p2

p0 − p2
= exp(ω01/kT ) − exp(ω02/kT )

1 − exp(ω02/kT ) = x2 − y2

y0 − y1
= x1 − y1

x0 − y2
= x0 − y0

x1 − x2
= b

p0 − p1

p0 − p2
= 1 − exp(ω01/kT )

1 − exp(ω02/kT ) = x0 − x1

y0 − y1
= y0 − x2

x0 − y2
= y1 − y2

x1 − x2
= c.

(9)

In reality the measurement signals are noisy, so computing the fraction and
expecting to get a single quotient as a result would be in vain. Instead, we can think
of the fraction as a linear relation between the differences of the signals, and the
quotient as the factor of that relation. When thought in this way, the first equation
of (8) can be written as

x2 − y2 = p1 − p2

p0 − p1⏞ ⏟⏟ ⏞
a

(x0 − x1)

where a is the factor of linear relation. Now, to solve for a, we need fit a linear
regression. In this case we can’t use simple linear regression as it expects there to
be dependent and independent variables where the independent variable is assumed
to be noise free. In our case this is not true as both of the sides have measurement
signals with some amount of noise and neither of them can be thought of as the
independent or dependent variable.

To correctly fit the factor in the model, we need to use Deming regression [10].
Deming regression allows us to fit a linear model between two sets of data where
both data sets have a known, but possibly different, amount of Gaussian noise. The
Deming regression is symmetrical in a sense that we could swap the signals on both
sides of the equation and still get the same regression, though with fitting factor a−1.
More about the Deming regression and derivation is presented in Appendix B.

The ratio of the variance of the noises, δ, is needed for the Deming regression.
The special case where both signals have the same amount of noise, and thus δ = 1, is
called orthogonal regression. In this study both signals being fitted to are differences
of two measurement signals and we can thus assume that they have the same amount
of noise. Thus we use orthogonal regression to fit the coefficient.
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One challenge with Deming regression is that it doesn’t provide an estimate for
the error in the fitted variable. To get an estimate, we need to rely on more general
error estimation methods, like jackknifing [11] which is used in this study. Jackknifing
is a resampling method for estimating variance of a given parameter. It works by
systematically leaving out one of the samples and computing the parameter for the
rest of the samples. The variance of the parameter can then be computed using

Var(a) = n − 1
n

n∑︂
i=1

(ai − a)2

where ai is the value of the parameter when sample i has been left out and a is the
value for the parameter when all n data samples are being considered. We can use
Student’s t-distribution to get the 95 % confidence interval for the actual value of
the parameter:

ConfidenceIntervalSize = Var(a)F −1
(︃

1 − α

2 , n − 1
)︃

where α = 1 − 95 %.
Once we have computed values and confidence intervals for a, b and c in (9), we

can use numerical equation solving methods for computing the temperature T of the
sample. There are three different equations presented for each of the coefficients a, b
and c, giving nine equations in total. This also means that there are nine different
ways to compute the temperature, each with different characteristics. In an idealized
world, all of these equations would produce the same result for the same set of
measurements, but due to imperfections and errors in the measurement setup, some
of these equations produce better predictions than others.

3.3 Data characteristics
Figure 6 shows all of the differences between two signals. Most of the signals have a
clear and similar envelope, but there are two notable exceptions: x1 − y1 and x0 − y0.
These difference signals are an order of magnitude weaker than other signals and
don’t have a clear envelope. This is important as in (9) the signals in the same
columns in Figure 6 are compared together and thus they should have the same
shape to get a good fit. This is not the case with x1 − y1 and x0 − y0, and thus
equations where they are present shouldn’t be used to determine the temperature.

The fact that the signals which have least structure are x1 − y1 and x0 − y0 is not
surprising. When writing these differences in terms of the hidden signals φi, we get

x0 − y0 = (p1 − p2)(φ1 − φ2)
x1 − y1 = (p1 − p2)(φ0 − φ2).

At the temperature and frequency scale the measurements are done, p0 ≈ 90 %,
p1 ≈ 10 %, and p2 ≈ 1 %. This means that there is only one tenth of the information
available for these signals compared to those where p0 is not canceled out.
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Figure 6: Differences between measured signals.

It is little surprising that x2 − y2 has such prominent and clear envelope. One
possible explanation is that to produce y2 signal, we must apply three consecutive
π pulses to the sample, which takes longer than just one or two pulses needed for
other signals. This means that the sample has more time to decay into other states
making the readout less accurate.

This all means that using the following set of equations to determine the temper-
ature should provide the best results

exp(ω01/kT ) − exp(ω02/kT )
1 − exp(ω01/kT ) = x2 − y2

x0 − x1
= a

exp(ω01/kT ) − exp(ω02/kT )
1 − exp(ω02/kT ) = x2 − y2

y0 − y1
= b

1 − exp(ω01/kT )
1 − exp(ω02/kT ) = x0 − x1

y0 − y1
= y0 − x2

x0 − y2
= y1 − y2

x1 − x2
= c.

If we also disregards those measurements where y2 is present due to it having most
time to decay, we are left with only the following equation to solve

1 − exp(ω01/kT )
1 − exp(ω02/kT ) = x0 − x1

y0 − y1
= c. (10)

In the following section, it is actually seen that this equation yields one of the best-
looking results, but there are also other pairs of differences of signals that produce
similar-looking results.
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4 Results
All six states described in Table 1 were constructed and the corresponding signals
were measured. The equations (9) were used to determine coefficients a, b and c for
all nine relevant pairs of differences of two signals. The coefficients were converted to
temperatures by solving the quotients of occupation probabilities in the equations.

Figure 7 shows the coefficients plotted as functions of temperature. The figure
shows that the coefficients can have values only in a limited range. When the
coefficients are determined from the measurement data, their values are not necessarily
limited to this range. In those cases, the temperature can’t be determined. Three of
the pairs of differences of signals produced invalid values for coefficients at all driving
frequencies and one produced invalid values at most of the frequencies.
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Figure 7: Values of coefficients a, b and c as functions of temperature. The tempera-
ture is converted into occupation probabilities pi using the Boltzmann distribution
(6).

Figure 8 shows the temperature determined using (10) which was postulated to
be the most accurate. Most of the measurements are between 45 mK and 65 mK, but
there are some outliers. The mean of all temperatures is 56 mK. The 95 % confidence
interval for most of the measurements is about ±7 mK.

Quotients between signals x0 − y0 and x1 − x2, and signals x1 − y1 and x0 − y2
show similar results. These are plotted in Figure 9a and Figure 9b, respectively. Both
of these figures agree with the temperatures determined using (10) to a reasonable
accuracy, though they still produce somewhat different values and error bounds
for the temperature. It is noteworthy that the former figure is determined using
difference x0 − y0 and the latter using x1 − y1, both of which were postulated to
produce worse results than other combinations of measurement signals.

Appendix A shows that other pairs of differences of signals actually produce
wildly different results than the three presented here. These can be safely ignored
as it is known that the temperature of the sample was around 100 mK during the
measurements.
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Figure 8: Temperature of the sample as a function of driving frequency determined
using (10).
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(a) Determined using x0 − y0 and x1 − x2.
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(b) Determined using x1 − y1 and x0 − y2.

Figure 9: Temperature of the sample as a function of driving frequency determined
using two different pairs of differences of measurement signals.

4.1 Frequency dependency of the temperature
The temperature of the sample shouldn’t depend on the driving frequency of the
transmon device. We used Kolmogorov–Smirnov test [12] to examine whether this is
true. We performed the test pairwise on all 41 different driving frequencies of the
transmon device for the temperatures determined using (10). The null hypothesis
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was that there is no difference between the pairs of measured distributions at different
frequencies.

Figure 10 shows the p-value for the rejection of the null hypothesis. The lower
the p-value, the more likely it is that the driving frequency affects the distribution of
determined temperatures. Cells where p < 5 % are shown in bright red. The cells
are not evenly spaced.
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Figure 10: p-values from pairwise Kolmogorov–Smirnov tests run on all samples
collected at 41 different driving frequencies. The bright red color shows where
p < 5 %.

The figure shows that the determined temperatures agree with each others at
frequencies between 5.542 GHz and 5.738 GHz, and also between 5.778 GHz and
6.183 GHz, with couple outliers. When comparing between these two ranges, the
temperatures don’t agree that well. It is notable that in the higher range the difference
between adjacent measurements is larger than in the lower range, and that is likely a
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partial reason why there is so hard discrepancy between the lower and upper ranges.
One thing to note is that the Kolmogorov–Smirnov test tests the similarity of the

distributions of the determined temperatures, not just the values, so the discrepancy
might also be partially due to the different precision characteristics of the method
at different driving frequencies. Still, Figure 8 shows a slight rising trend of the
temperature as a function of driving frequency, which, together with the results
from Kolmogorov–Smirnov test, hint towards a conclusion that the determined
temperature somewhat depends on the driving frequency of the transmon device.
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5 Conclusion
The method developed in this study produces plausible values for the temperature
of the sample. The temperatures have slight dependency on the temperature. More
measurements are needed to determine what causes this temperature dependency.
The measurements should be performed in a random order of driving frequency to
eliminate systematic increase or decrease of the temperature of the sample during
the measurements. In this study, the measurements were done in three consecutive
batches of measurements in decreasing order during a 72 hour period, which may
make the results presented susceptible to systematic bias.

The number of samples that are averaged together should be varied in future
studies. Increasing the number of samples lowers the noise of measurements and
allows more samples with response signals corresponding to p1 and p2 to be recorded.
On the downside, increasing number of samples increases the time the measurement
takes and allows more random temporal variation of the temperature to occur.

One method worth considering would be to remove the averaging of samples
altogether and use a clustering algorithm to cluster the measured response signals
into three classes. This way one could compute the occupancy probabilities of the
states without using the somewhat complicated method described in this study. This
might not be possible in practice as the response signals to different states might
differ too little to be distinguishable above the noise level. The raw, unaveraged
measurement signals were not available for this study so the viability of this method
couldn’t be evaluated.
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A Determined temperatures
In the main report, nine equations were found for determining the temperature of
the sample

a = x2 − y2

x0 − x1
a = x1 − y1

y0 − x2
a = x0 − y0

y1 − y2

b = x2 − y2

y0 − y1
b = x1 − y1

x0 − y2
b = x0 − y0

x1 − x2

c = x0 − x1

y0 − y1
c = y0 − x2

x0 − y2
c = y1 − y2

x1 − x2

where
a = p1 − p2

p0 − p1
= exp(ω01/kT ) − exp(ω02/kT )

1 − exp(ω01/kT )

b = p1 − p2

p0 − p2
= exp(ω01/kT ) − exp(ω02/kT )

1 − exp(ωu02/kT )

c = p0 − p1

p0 − p2
= 1 − exp(ω01/kT )

1 − exp(ω02/kT ) .

Of these equations, one was deemed to be most likely to give most accurate results:

c = p0 − p1

p0 − p2
= 1 − exp(ω01/kT )

1 − exp(ω02/kT ) = x0 − x1

y0 − y1

The temperatures determined using this equation are shown in Figure A1.
Two other pairs of differences of measurements also produced similar results:

b = x1 − y1

x0 − y2

shown in Figure A2, and
b = x0 − y0

x1 − x2

shown in Figure A3. The following pairs of differences of measurements produced
differing results

a = x1 − y1

y0 − x2
a = x0 − y0

y1 − y2
c = y1 − y2

x1 − x2
.

They are shown in Figures A4, A5 and A6 respectively. The last of these produced
only barely valid values for coefficient c on some of the measurements and invalid
values for the rest. Only invalid values for the coefficients were produced for the
following equations:

a = x2 − y2

x0 − x1
b = x2 − y2

y0 − y1
c = y0 − x2

x0 − y2
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Figure A1: Temperature determined using signals x0 − x1 and y0 − y1 as function of
driving frequency of the transmon device.
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Figure A2: Temperature determined using signals x1 − y1 and x0 − y2 as function of
driving frequency of the transmon device.
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Figure A3: Temperature determined using signals x0 − y0 and x1 − x2 as function of
driving frequency of the transmon device.



29

5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3

Driving frequency (GHz)

0

5

10

15
T

e
m

p
e
ra

tu
re

 (
m

K
)

Figure A4: Temperature determined using signals x1 − y1 and y0 − x2 as function of
driving frequency of the transmon device.
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Figure A5: Temperature determined using signals x0 − y0 and y1 − y2 as function of
driving frequency of the transmon device.
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Figure A6: Temperature determined using signals y1 − y2 and x1 − x2 as function of
driving frequency of the transmon device.
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B Deming regression
In physics, and data analysis in general, there is often a need to fit a model to the
measured data. Of special interest in this study is a linear model through the origin

y ≈ βx (B1)

which is a special case of the more general linear model with an intercept parameter

y ≈ β1x + β0. (B2)

Both of these models can be fitted using simple linear regression scheme taught at
the basic-level data science courses. The simple linear regression fit for (B1) is given
by

β =
∑︁n

i=1 xiyi∑︁n
i=1 x2

i

.

The reason why simple linear regression is not sufficient for use in this study
is that it minimizes the the error only in y direction. This means that swapping
x and y coordinates produce a different fit to the measurement data and thus a
different coefficient. This is sufficient when we assume that the measurement error
in x direction is negligible. In this study, both x and y variables are differences of
two measurement signals and thus both of them have approximately same amount of
measurement error in them. Hence we need another way for fitting the model, namely
one which minimizes the error of the fit in both x and y direction simultaneously.
This difference is visualized in Figure B1, where the black vertical and diagonal lines
show the differences being minimized between measurement and model.
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Figure B1: Difference between simple linear regression (left) and Deming regression
(right). Blue crosses are the data and red line is the fitted model. Black lines are the
distances being minimized.

The original version, first found by Kummell [13], and later popularized by Deming
[10], actually fit the model (B2) with intercept parameter. Linnet [14] later showed
that the Deming regression is equivalent to maximum likelihood estimate (MLE) of
the (B2) model. In the following we will derive the intercept-free Deming regression
following in the steps of Peter Nagy [15].
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Let (xi, yi) be the ith data sample, and let ξi be the optimal x coordinate for the
ith data sample. Let δ be the ratio between variance in x and y directions, δ = σ2

y

σ2
x
.

This allows us to write σ2
x = σ2 and σ2

y = δσ2. Let’s start by writing the likelihood
formula for (B1)

l =
n∏︂

i=1

1√
2πσ2

e− (xi−ξi)2

2σ2
1√

2πδσ2
e− (yi−βξi)2

2δσ2 . (B3)

The logarithm is a monotonic function, and thus the maximum of logarithm of the
likelihood is also the maximum of the likelihood. The log-likelihood is

L = −n

2 log(2πσ2) − n

2 log(2πδσ2) −
∑︁n

i=1(xi − ξi)2

2σ2 −
∑︁n

i=1(yi − βξi)2

2δσ2 . (B4)

A necessary but not sufficient condition for the maximum is that the partial derivatives
of (B4) w.r.t. ξi must be 0

0 = ∂L

∂ξi

= 2(xi − ξi)
2σ2 + 2β(yi − βξi)

2δσ2

which can be solved for ξi to get

ξi = δxi + βyi

δ + β2 . (B5)

Another necessary condition is that the partial derivative w.r.t. β

∂L

∂β
=

n∑︂
i=1

ξi(yi − βξi)
δσ2

must equal to 0. Substituting (B5) into this yields

0 = ∂L

∂β
=

n∑︂
i=1

δxi+βyi

δ+β2 (yi − β δxi+βyi

δ+β2 )
δσ2 =

∑︁n
i=1(δxi + βyi)(yi − βxi)

(δ + β2)2σ2 .

Clearly (δ + β2)2 > 0 and σ2 > 0. Thus it suffices to equate the denominator to zero.
Expanding the terms yields

0 = δ
n∑︂

i=1
xiyy − δβ

n∑︂
i=1

x2
i + β

n∑︂
i=1

y2
i − β2

n∑︂
i=1

xiyi.

By noting

Sxx =
n∑︂

i=1
x2

i Syy =
n∑︂

i=1
y2

i Sxy =
n∑︂

i=1
xiyi

the above equation can be simplified into

0 = δSxy − δβSxx + βSyy − β2Sxy = −β2Sxy + (Syy − δSxx)β + δSxy.
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This is just a second degree polynomial equation, whose roots are

β̂± =
Syy − δSxx ±

√︂
(Syy − δSxx)2 + 4δS2

xy

2Sxy

. (B6)

These roots can correspond to minima, maxima and saddle points of the likelihood.
The only thing left to do is to verify which one of these roots is the maximum of the
log-likelihood (B4) and thus also of the likelihood (B3). This can be found out by
examining the local curvature of the log-likelihood at the roots β̂±, which can be
done by examining the second derivative w.r.t. β. The easiest way to get the second
derivative is to substitute (B5) into (B4) to turn the log-likelihood into a function of
only β and then computing the second derivative. The substitution yields

L = −n

2 log(2πσ2) − n

2 log(2πδσ2) −
δSxx + Syy − δ2Sxx+β2Syy+2δβSxy

δ+β2

2δσ2

whose second derivative is

d2L

dβ2 = 2β3Sxy − 6δβSxy − 3β2Syy + δSyy − δ2Sxx + 3δβ2Sxx

σ2(δ + β2)3 .

As previously, the nominator is strictly positive. This means that the sign of d2L
dβ2 is

the same as the sign of the denominator and it suffices to disregard the nominator.
Another trick is to reduce the order of the denominator at the roots β̂± by noting

2β̂
3
±Sxy − 6δβ̂±Sxy − 3β̂

2
±Syy + δSyy − δ2Sxx + 3δβ̂

2
±Sxx

=2β̂± ·
(︃

Sxyβ̂
2
± + (δSxx − Syy)β̂± − δSxy

)︃
⏞ ⏟⏟ ⏞

=0

+ (δSxx − Syy)β̂2
± − 4δSxyβ̂± + δSyy − δ2Sxx

=(δSxx − Syy)β̂2
± − 4δSxyβ̂± + δSyy − δ2Sxx

as β̂± are the roots of Sxyβ2 + (δSxx − Syy)β − δSxy by definition. Substituting in
the values of roots β̂± from (B5) yields

(︂
σ2(δ + β2)3

)︂ dL2

dβ2

⃓⃓⃓⃓
⃓
β=β̂±

= ∓ 1
2S2

xy

(︂
(Syy − δSxx)2 + 4δS2

xy

)︂
·

(︂
±(Syy − δSxx) +

√︂
(Syy − δSxx)2 + 4δS2

xy

)︂
.

Clearly

1
2S2

xy

> 0 and (Syy − δSxx)2 + 4δS2
xy > 0.
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It can also be seen that

|Syy − δSxx| <
√︂

(Syy − δSxx)2 + 4δS2
xy,

which means that

±(Syy − δSxx) +
√︂

(Syy − δSxx)2 + 4δS2
xy > 0.

As all factors are positive, the whole product is positive and it’s sign is determined
only by the sign chosen for β̂±. When selecting β̂+, the second derivative of the
log-likelihood, and thus of the likelihood, is negative meaning that β̂+ is the optimal
choice of parameter β. Likewise β̂− yields the pessimal choice for the parameter.
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