
Locally Checkable Labeling Problems
in Rooted Trees in the Online-LOCAL
Model of Computation

Henrik Lievonen

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 28 February 2022

Supervisor

Prof. Jukka Suomela

Advisor

Dr. Darya Melnyk

Copyright © 2022 Henrik Lievonen

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Henrik Lievonen
Title Locally Checkable Labeling Problems in Rooted Trees in the Online-LOCAL

Model of Computation
Degree programme Master’s Programme in Computer, Communication and

Information Sciences
Major Computer Science Code of major SCI3042
Supervisor Prof. Jukka Suomela
Advisor Dr. Darya Melnyk
Date 28 February 2022 Number of pages 59 Language English
Abstract
There are many ways to classify algorithms. Online algorithms, for example, are
algorithms that have to be able to handle input one element at a time. Offline
algorithms, on the other hand, have access to the whole input. In the case of online
graph algorithms, the structure of the underlying graph is fixed. The graph is
revealed to the algorithm one node at a time. When a node is revealed, the algorithm
has to decide its output for that node, and it cannot change its decision later.

Another way to classify algorithms is to divide them into centralized and dis-
tributed algorithms. In the case of graph algorithms, a centralized algorithm is
a completely separate entity from the graph. When the nodes (or edges) of the
graph are active parties in the execution of the algorithm, the algorithm is called a
distributed algorithm. One commonly used model of distributed computation is the
LOCAL model. In the LOCAL model, all nodes are computing their own part of
the result in parallel. The nodes only see their own local neighborhood and need to
base their decision only on this local view.

In this thesis, I introduce the online-LOCAL model, which combines the power
of online graph algorithms and LOCAL algorithms. Like online graph algorithms,
online-LOCAL algorithms need to react to nodes being revealed one at a time.
Unlike online graph algorithms, online-LOCAL algorithms also get to see the local
neighborhood around the nodes before needing to make their decisions.

The online-LOCAL model is a very strong model of computation. In general,
there are problems that are trivial in the online-LOCAL model, but difficult to solve
with online graph algorithms and LOCAL algorithms. In this thesis, I restrict my
attention to the class of problems known as locally checkable labeling problems.
These are a broad class of problems for which a solution is valid if it looks valid
in all local neighborhoods. In particular, I show that for locally checkable labeling
problems in rooted regular trees, the online-LOCAL model is approximately as
powerful as the LOCAL model.
Keywords Online graph algorithms, Distributed algorithms, Locally checkable

labeling problems, LOCAL model, Online-LOCAL model

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Diplomityön tiivistelmä

Tekijä Henrik Lievonen
Työn nimi Paikallisesti tarkistettavat merkitsemisongelmat juurellisissa puissa

online-LOCAL-mallissa
Koulutusohjelma Master’s Programme in Computer, Communication and

Information Sciences
Pääaine Computer Science Pääaineen koodi SCI3042
Työn valvoja Prof. Jukka Suomela
Työn ohjaaja Dr. Darya Melnyk
Päivämäärä 28 February 2022 Sivumäärä 59 Kieli Englanti
Tiivistelmä
Algoritmeja voidaan luokitella monin eri perustein. Esimerkiksi online-algoritmit ovat
algoritmeja, joiden pitää pystyä käsittelemään syötettä alkio kerrallaan. Niiden vasta-
kohta on offline-algoritmit, joilla on pääsy koko syötteeseen. Online-verkkoalgoritmien
tapauksessa verkon rakenne on kiinnitetty, mutta verkko paljastetaan algoritmille
solmu kerrallaan. Solmun paljastuessa paljastuvat myös siitä lähtevät kaaret aiemmin
paljastettuihin solmuihin. Algoritmin täytyy välittömästi päättää tuloste paljastetulle
solmulle, eikä se voi enää myöhemmin muuttaa päätöstään.

Toinen tapa luokitella algoritmeja on jakaa ne hajautettuihin ja keskitettyihin
algoritmeihin. Verkkoalgoritmien tapauksessa keskitetty algoritmi on verkosta irral-
linen toimija. Jos sen sijaan verkon solmut (tai kaaret) ovat aktiivisia toimijoita
algoritmin suorituksessa, on kyseessä hajautettu algoritmi. Yksi paljon tutkittu ha-
jautettujen algoritmien malli on LOCAL-malli. LOCAL-mallissa jokainen verkon
solmu laskee samanaikaisesti oman osansa ratkaisusta. LOCAL-mallissa algoritmi nä-
kee vain solmun välittömän lähiympäristön, jonka pohjalta algoritmin täytyy päättää
ratkaisu solmulle.

Tässä työssä esittelen online-LOCAL-mallin, joka yhdistää online-verkko- ja
LOCAL-algoritmien tehokkuuden. Online-algoritmien tavoin online-LOCAL-algo-
ritmien täytyy pystyä ratkaisemaan ongelma solmu kerrallaan. Toisin kuin online-
verkkoalgoritmit, online-LOCAL-algoritmit näkevät myös solmun lähiympäristön
ennen kuin niiden pitää päättää tuloste solmulle.

Online-LOCAL-malli on erittäin vahva laskennan malli. On olemassa ongelmia,
jotka ratkeavat helposti online-LOCAL-mallissa, mutta joita ei pysty ratkaisemaan
online- eikä LOCAL-algoritmeilla. Yleensä LOCAL-mallia tutkittaessa rajoittaudu-
taan kuitenkin paikallisesti tarkistettaviin merkitsemisongelmiin. Ne ovat verkko-
ongelmia, joille ratkaisu on kelvollinen mikäli se näyttää kelvolliselta kaikkien solmu-
jen lähiympäristöissä. Tässä työssä osoitan, että online-LOCAL-malli on vain hieman
vahvempi kuin LOCAL-malli, kun tarkastelu rajoitetaan paikallisesti tarkistettaviin
merkitsemisongelmiin säännöllisissä juurellisissa puissa.
Avainsanat online-verkkoalgoritmit, hajautetut algoritmit, paikallisesti

tarkistettavat merkitsemisongelmat, LOCAL-malli, online-LOCAL-malli

6

7

Acknowledgements
I would like to thank my advisor Darya Melnyk for all the invaluable feedback I have
received both on the technical results and on my writing. Without her help, my
thesis would not have reached its current shape.

I would also like to thank my supervisor Jukka Suomela for letting me work as
a teaching assistant on many of his courses during my studies. Therefore, it was
very natural for him to also supervise my Master’s thesis. I am looking forward to
starting my doctoral studies in his group.

Many thanks to Amirreza Akbari and Joona Särkijärvi for helping me get the
initial details of the proofs right. I will remember our summer together in the research
group.

I would also like to thank Chetan Gupta, Juho Hirvonen, Rustam Latypov,
Joonatan Saarhelo, Jan Studený and Jara Uitto for the conversations in the hallways
and during lunches when those were possible. Thanks to Alkida Balliu, Fabian Kuhn
and Dennis Olivetti for our discussions during your research visit at Aalto. I hope
that our collaboration will be fruitful in the future.

Finally, I would like to thank my parents and my brother for supporting me in
everything I do. Without them, I would not be here.

This work was supported in part by the Academy of Finland, Grant 333837.

Otaniemi, 28 February 2022

Henrik E. M. Lievonen

8

9

Contents
Abstract 3

Abstract (in Finnish) 5

Acknowledgements 7

Contents 9

1 Introduction 11
1.1 Contributions . 13
1.2 Roadmap . 14

2 Related work 15
2.1 The LOCAL model of distributed computation 15
2.2 Locally checkable labeling problems 15
2.3 The sequential-LOCAL model . 16
2.4 Online graph algorithms . 17

3 Definitions 19
3.1 Graphs . 19
3.2 Automata . 20
3.3 Online graph algorithms . 20
3.4 Distributed models of computation 21
3.5 The online-LOCAL model . 22
3.6 Locally checkable labeling problems 23
3.7 LCLs as automata: path-form and path-flexibility 26
3.8 Iterated logarithm . 29

4 Locally checkable labeling problems in directed paths 31

5 Locally checkable labeling problems in rooted regular trees 35
5.1 21

2 -coloring requires Ω(
√

n) locality in the online-LOCAL model . . . 35
5.2 Equivalence in super-logarithmic region 45
5.3 Equivalence in sub-logarithmic region 50

6 Conclusion 55

References 57

10

11

1 Introduction
Many natural problems around us can be understood as graph problems. For example,
many problems related to logistics and transportation can be easily modelled as
graph problems in the transportation network. There are also other problems that do
not immediately look like graph problems but that can nevertheless be modelled as
such. One such problem is the channel assignment problem in cellular networks [20].

For the channel assignment problem, consider a cellular network which consists
of individual transmitters. Each transmitter needs to be assigned a channel which it
can use for its transmissions. When a transmitter transmits a signal, other devices in
its coverage area can receive it. If two transmitters, whose coverage areas overlap, try
to transmit on the same channel, their signals interfere, rendering the transmission
indecipherable. Therefore, the channels should be assigned to the transmitters such
that the signals of two transmitters never interfere.

This problem of channel assignment can be modelled as a graph problem. Each
node of the graph represents a transmitter. Two nodes of the graph are connected
if their coverage areas overlap, and therefore their signals can interfere. Each node
needs to be assigned a channel such that no two nodes that are connected by an
edge can have the same channel.

When the channel assignment problem is formulated in this way as a graph
problem, it begins to look like the classic graph coloring problem. In the coloring
problem, the nodes of the graph need to be assigned colors such that no two
neighboring nodes can have the same color. Here the colors represent the channels
assigned to the transmitters.

The coloring problem has, for example, been studied extensively in the centralized
model of computation. In the centralized model, an algorithm that is solving a
problem has full information of the input. The main limitation of a centralized
algorithm is the amount of time it needs to solve the given problem. For example, in
the case of the channel allocation problem, a centralized algorithm knows where all
the transmitters are and how their coverage areas overlap.

While the centralized model is very powerful, it assumes that the algorithm has
full information of the input. For example, in a real cellular network, the transmitters
are not static. More transmitters can be added, they can move around, and they
may also be removed.

Online graph algorithms are a model which tries to answer to the case where nodes
are added one-by-one. The input graph is revealed to an online graph algorithm
one node at a time. When a node is revealed, the algorithm needs to immediately
choose an output for that node, and the algorithm cannot change its choice later. In
the case of channel allocation, the transmitters appear one-by-one. When a node
appears, the algorithm needs to immediately assign it a permanent channel such
that no current or future neighbor transmitter shares the same channel.

Both the centralized algorithms and the online graph algorithms presented above
are centralized in the sense that a single entity is doing all the computations. This
creates a single point of failure whose crash would cause the whole network to
malfunction.

12

It is possible to alleviate the problem of centralization using distributed algorithms.
In the distributed model, the nodes of the graph are doing the computation themselves
instead of there being a single centralized entity doing it on their behalf. One much-
studied distributed model is the LOCAL model of computation. In the LOCAL
model, each node is running its own instance of the algorithm and needs to decide its
own output. Each node needs to base its decision only on the structure of its local
neighborhood. In particular, this neighborhood includes all nodes and edges that are
within distance T of the node. The distance T is called the locality of the algorithm.
The computation in the LOCAL model is fully parallelized, and the nodes do not
share any memory.

In general, it is known that LOCAL algorithms cannot find the minimum coloring
of a graph, unless the nodes of the network can see (almost) the whole network.
Nevertheless, there exist efficient LOCAL algorithms for finding a (∆ + 1)-coloring
of a graph, where ∆ is the maximum number of neighbors a node can have. While
it is not possible to solve the (∆ + 1)-coloring problem with a constant locality,
already increasing the locality to O(log∗ n) suffices. The function log∗ is the iterated
logarithm which is a very slowly growing function.

In this thesis, I study what happens if the online graph algorithms are empowered
by giving them access to local information. In particular, I present the online-LOCAL
model of computation. It differs from the online graph algorithms by letting the
algorithm see the neighborhoods around the nodes before needing to decide their
outputs.

It is pretty easy to see that the online-LOCAL model is at least as powerful as
the LOCAL model. This is because an online-LOCAL algorithm could simulate a
LOCAL algorithm in the neighborhood it sees to decide the output for the node.
The main question is if the online-LOCAL model is more powerful, and if it is, by
how much?

The answer turns out to be yes. Already in 2017, Ghaffari et al. [14] shortly
considered the online-LOCAL model when introducing the sequential-LOCAL model
but deemed it too powerful to be of interest. This is because an online-LOCAL
algorithm can select a leader node in the graph with locality T = 0 while a LOCAL
algorithm needs to see almost the whole graph to select a leader.

Contrary to their claim, I show in this thesis that the online-LOCAL model is
not too strong. In particular, I show that the online-LOCAL model is approximately
as powerful as the LOCAL model in rooted regular trees for the broad class of graph
problems called locally checkable labeling (LCL) problems. These are problems for
which a labeling of nodes is valid if it looks valid in all local neighborhoods. The
coloring problem is, for example, an LCL problem because a coloring is valid when
the coloring looks valid around all nodes. In particular, if no node of the graph has
a neighbor with the same color, the coloring is valid.

One interesting consequence of the LOCAL and the online-LOCAL models being
approximately equal for LCL problems in rooted trees is that it implies similar
equality for other models too. In particular, the sequential-LOCAL [14] and the
dynamic-LOCAL [1] models are also equal to these models. The sequential-LOCAL
model is similar to the online-LOCAL model. The only difference is that the nodes

13

Table 1: Relation of complexity classes of LCL problems in directed paths and rooted
trees in the LOCAL and the online-LOCAL models.

online-
LOCAL LOCAL

LCL problems in directed paths O(log∗ n) ⇔ O(1)
Θ(n) ⇔ Θ(n)

LCL problems in rooted regular trees O(log∗ n) ⇔ O(1)
Θ(log n) ⇔ Θ(log n)
nΘ(1) ⇔ nΘ(1)

do not have any shared global memory. For dynamic-LOCAL, consider a case where
the underlying graph is changing over time. A dynamic-LOCAL algorithm is allowed
to modify the labels in the neighborhoods of the changes to keep the solution valid.

1.1 Contributions
In this thesis, I provide an almost complete classification of locally checkable labeling
problems in directed paths and rooted regular trees. In particular, I prove that in
the online-LOCAL model the possible classes of locality for LCL problems in rooted
regular trees are O(1), Θ(log n) and nΩ(1). This classification corresponds to the
previously known complexity classes O(log∗ n), Θ(log n) and nΩ(1) in the LOCAL
model [5]. I also prove that the same classification holds in directed paths, which
can be seen as a special case of rooted trees. The main differences are that the
complexity class Θ(log n) is missing and the class nΩ(1) simplifies to class Ω(n) in
directed paths. The only missing part of the classification in rooted regular trees is
the finer structure inside class nΩ(1). Table 1 summarizes the main contributions of
this thesis.

More formally, I prove the following theorem in directed paths:

Theorem 1.1 (Equivalence in directed paths). Let Π be an LCL problem in directed
paths. If the problem is solvable with locality T in the online-LOCAL model, then it
is solvable with O(T + log∗ n) locality in the LOCAL model.

In rooted trees, I prove the following two theorems which, together with the
previously known classification in the LOCAL model [5], provide the full classification:

Theorem 1.2 (Equivalence in rooted trees, super-logarithmic region). Let Π be an
LCL problem in rooted trees. Problem Π requires locality nΩ(1) in the online-LOCAL
model exactly when it requires nΩ(1) locality in the LOCAL model.

Theorem 1.3 (Equivalence in rooted trees, sub-logarithmic region). Let Π be an LCL
problem in rooted trees. Problem Π requires locality Ω(log n) in the online-LOCAL
model exactly when it requires Ω(log n) locality in the LOCAL model.

14

The results in this thesis have become a part in a pre-published manuscript [1]
that I have co-authored. I was primarily responsible for researching and writing up
parts corresponding to Sections 4 and 5.

1.2 Roadmap
This thesis is structured as follows. In Section 2, I present previous work that has
been done to understand distributed algorithms in the LOCAL and the sequential-
LOCAL models. I also present previous work related to understanding online graph
algorithms.

In Section 3, I give definitions for the theoretical concepts needed to understand
the core results of this thesis. Readers who are familiar with graphs and automata
in general are advised to skip Sections 3.1 and 3.2. In Sections 3.3 and 3.4, I first
define online graph algorithms and then the main models of distributed computation
that are used in this thesis. I recommend all readers to read Section 3.5 where I give
the definition for the online-LOCAL model.

In Section 3.6, I give formal definitions for locally checkable labeling problems,
and in Definition 3.20, I present a possible way to describe LCL problems that is
used later in this thesis. In Section 3.7, I connect the locally checkable labeling
problems with automata. At the end, in Section 3.8, I give a definition for the
iterated logarithm.

In Section 4, I show that the equivalence between the LOCAL and the online-
LOCAL models holds in directed paths by proving Theorem 1.1. In Section 5, I prove
that the equivalence holds also for the more general class of rooted regular trees.
Before stating the actual proves, I present an example LCL problem in Section 5.1
and show that it requires locality Ω(

√
n) in the online-LOCAL model. In Section 5.2,

I generalize this technique to all LCL problems and prove Theorem 1.2. In Section 5.3,
I complete the classification of LCL problems in rooted regular trees by proving
Theorem 1.3.

15

2 Related work
In this section, I provide a brief overview of what is already known about LOCAL
algorithms, online graph algorithms and locally checkable labeling problems. I defer
more formal definitions of these concepts to Section 3.

2.1 The LOCAL model of distributed computation
Linial [18] initiated the modern study of distributed graph algorithms by introducing
the LOCAL model. The LOCAL model models a distributed system as a graph
where each node represents a computer, and each edge represents a bidirectional
communication link. All nodes of the graph are running the same algorithm.

The execution of an algorithm in the LOCAL model proceeds in synchronous
rounds. In each round, each node gets to send a message to each one of its neighbors.
The nodes then get to update their states based on the messages they have received.

The LOCAL model tries to capture the notion of locality by imposing restrictions
only on the number of synchronous rounds of message exchange the algorithm is
allowed to perform. In particular, the model imposes no restrictions on the amount
of computations the algorithm can do, or on the size of messages the nodes exchange.

The number of synchronous round an algorithm is allowed perform is called
the locality of the algorithm as, within T synchronous rounds of message exchange,
each node can only receive information from distance of at most T . To allow nodes
to distinguish themselves in their neighborhoods, the nodes are assigned unique
identifiers. Linial was able to prove many lower bounds on the localities needed to
color different classes of graphs in the LOCAL model, including that 3-coloring a
cycle requires Ω(log∗ n) locality.

2.2 Locally checkable labeling problems
Naor and Stockmeyer [19] continued to study the LOCAL model, and focused
especially on the problems which can be solved in constant locality. To do this, they
introduced a class of problems known as locally checkable labeling (LCL) problems.
These are problems for which the validity of a solution can be checked locally; a
solution to an LCL problem is valid if it looks like a valid solution around every node
of the graph.

It turns out that many interesting graph problems can be encoded as LCL
problems: Vertex and edge coloring problems are canonical examples of LCL problems
because for them a solution is valid if no vertex (resp. edge) of the graph is adjacent
to another node (resp. edge) with the same color. Maximal matching problem is also
an LCL problem because every node can locally check that they belong to at most
one match, and that the other node they are matched to agrees on the match. In
addition, the unmatched nodes can check that none of their neighbors are unmatched,
as otherwise the matching would not be maximal.

Recently, the localities of LCL problems in the LOCAL model have been classified
for many natural families of graphs. In paths, cycles and grids the possible localities

16

are O(1), Θ(log∗ n) and Ω(n) [3, 11, 19, 8]. In rooted and unrooted trees the
possible localities are O(1), Θ(log∗ n), Θ(log n) and nΩ(1) in the deterministic LOCAL
model [5, 10]. It is known that in the randomized LOCAL model, there exist also
LCL problems in unrooted trees with complexities in ranges Ω(log log∗ n) – O(log∗ n)
and Ω(log log n) – O(log n) [10].

In recent years, there has been aim to automate the process of deciding the
complexity classes of LCL problems. Balliu et al. [4] provided practical algorithms
for deciding the complexity of two-label LCL problems in trees. Balliu et al. [3]
showed that the complexity of LCL problems in paths and cycles is decidable, albeit
PSPACE-hard.

Chang et al. [11] restricted their attention to LCL problems in paths and cycles
without inputs and provided efficient algorithms for deciding which complexity class
LCL problems belong to. Most of the algorithms they provided run in polynomial
time, but a couple of specific problems are NP-complete.

Balliu et al. [5] continued the classification work by classifying all LCL problems
without input in rooted regular trees. They defined certificates for LCL problems,
and showed that the existence of a certificate implies that the problem is solvable
with specific locality. Moreover, they provided exponential-time algorithms for
constructing these certificates. In practice, the algorithms they provided are efficient
and can be implemented.

In this thesis, I show that the online-LOCAL model is no more powerful than
the LOCAL model in solving LCL problems in directed paths and rooted regular
trees. In particular, the existing classification results for the LOCAL model extend
directly to the online-LOCAL model.

All of the above-mentioned algorithms have been implemented in practice. LCL
Classifier1 is a web-site developed by Tereshchenko [24] for classifying LCL problems
in cycles, paths, trees and rooted trees automatically. Anyone can plug in the LCL
problem of their choice using a similar formalism as presented in Definition 3.20, and
the web-site can automatically tell the complexity of the given problem.

2.3 The sequential-LOCAL model
One of the main hurdles with the LOCAL model is symmetry breaking. To understand
the problem, consider a long path of nodes with increasing identifiers and a LOCAL
algorithm with constant locality. In the middle of the path, the algorithm only sees
that it is in the middle of a path with increasing identifiers. Naor and Stockmeyer [19]
showed that in this case the algorithm cannot label the nodes with any other label
than a constant. In particular, this means that in cycles and paths, only LCL
problems admitting a constant solution are solvable in constant locality in the
LOCAL model.

To solve the problem of symmetry breaking, Ghaffari et al. [14] introduced the
sequential-LOCAL model (also known as the SLOCAL model in the literature). The
sequential-LOCAL model differs from the LOCAL model in a key way: The nodes of

1https://lcl-classifier.cs.aalto.fi/

https://lcl-classifier.cs.aalto.fi/

17

the graph are processed in a sequential order. Every node has also a local memory.
When a node is processed, it sees the structure of its local neighborhood along
with the memories of the nodes in its neighborhood. The nodes can use their local
memories to communicate with other nodes in their neighborhood.

Symmetry breaking is easy in the sequential-LOCAL model: the symmetry is
broken by the order in which the nodes are processed. This makes some problems
easier to solve in the sequential-LOCAL model than in the LOCAL model. In fact,
any problem solvable with locality O(log∗ n) in the LOCAL model is solvable with
locality O(1) in the sequential-LOCAL model.

2.4 Online graph algorithms
Online algorithms are algorithms which need to be able to solve problems without
knowing the whole input beforehand. In particular, the input is revealed to the
online algorithm one piece at a time. Each time a piece of the input is revealed, the
algorithm needs to decide the output for that piece.

Online graph algorithms are online algorithms which operate on graphs. The
underlying graph is fixed and is being revealed to the algorithm one node or edge at
a time. When the algorithm gets to see a node or an edge, it needs to decide the
output for it immediately.

The effectiveness of online algorithms is usually measured by competitiveness
ratio [23]. The output produced by the algorithm is assigned a cost which measures
how good or bad the output is; a lower cost is more desirable. An online algorithm
is said to have competitiveness ratio c if for any possible sequence of inputs, the cost
of the output it produces is at most c times higher than that of an optimal offline
algorithm.

There have been some attempts at strengthening online algorithms [2, 15]. Most
of them rely on the algorithm being able to defer the choice of its output in time:
Sometimes the algorithm is allowed to delay its decisions a fixed amount of time.
Other times the algorithm is allowed to dynamically choose for which pieces of the
input it wants to defer its output, as long as there are not too many pieces being
delayed at the same time. Albers and Schraink [2] have shown that for coloring
problems, being able to delay the outputting does not help online algorithms unless
the algorithm gets to delay its decisions for at least ω(n/ log n) nodes.

In this thesis, I study the online-LOCAL model which strengthens the online
algorithms in another way. In the online-LOCAL model, the algorithm gets to see
the neighborhood of the node before it needs to decide its output. This corresponds
to the algorithm being able to look around in space, instead of being able to look
ahead in time.

18

19

3 Definitions
In this section, I define the key concepts used in this thesis. I start by defining some
commonly known concepts of graphs and automatons in Sections 3.1 and 3.2. In
Sections 3.3 and 3.4, I define online graph algorithms and the LOCAL model of
distributed computation. I then combine these models by introducing the online-
LOCAL model in Section 3.5. In Section 3.6, I define locally checkable labeling
problems, and in Section 3.7, I show how they relate to automata. Finally, in
Section 3.8, I define the iterated logarithm.

3.1 Graphs
The models of computation studied in this thesis model a distributed system as a
graph. In this section, I define directed graphs and some key concepts of them. In
addition, I define two important families of graphs: directed paths and rooted trees.

Definition 3.1 (Graph). A (directed) graph G = (V, E) consists of a set of vertices V
and set of directed edges E ⊆ V × V connecting them. A directed edge (u, v) ∈ E
consists of a tail u and a head v.

For every node v of the graph, the indegree of v is the number of neighboring edges
oriented towards v, that is the number of edges of form (u, v) in E for some u ∈ V .
Similarly, the outdegree of v is the number of oriented neighboring edges oriented
away from v.

Definition 3.2 (Walk). A walk u ⇝ v in a graph G is sequence of vertices
u = s1, s2, . . . , sn = v such that for every 1 ≤ i < n, edge (si, si+1) belongs to
the graph.

Definition 3.3 (Cycle). Let G = (V, E) be a graph. Graph G has a cycle if for
some node v in V there exists a walk v ⇝ v with at least one edge. The edge can
be (v, v). A graph without a cycle is called acyclic.

Definition 3.4 (Rooted tree). A rooted tree is an acyclic graph with a distinguished
node r such that from every node v, there exist a unique walk v ⇝ r. The
distinguished node r is called the root of the tree. A rooted tree is regular if the
indegree of every node is either 0 or δ, where δ is a constant.

Definition 3.5 (Directed path). A rooted tree G is a directed path if the indegree
of every node is at most one.

Definition 3.6 (Induced subgraph). Let G = (V, E) be a graph, and let U be a
subset of nodes V . The subgraph induced by U of G, denoted by G[U] = (U, E ′), is
the graph consisting of nodes U , and a subset E ′ of edges E where both endpoints
of every edge reside in U . In other words, E ′ = {(u, v) | (u, v) ∈ E, u, v ∈ U}.

20

Definition 3.7 (Neighborhood). Let G = (V, E) be a graph, and let v be a node
of V . Let B(v, T) be the set of nodes in the radius-T neighborhood of v. It can be
defined recursively as

B(v, T) =

⎧⎨⎩
⋃︁

u∈B(v,1) B(u, T − 1) T ≥ 2
{u | (v, u) ∈ E} ∪ {u | (u, v) ∈ E} T = 1

.

In other words, set B(v, T) contains the nodes that are within distance T from v.
The radius-T neighborhood of v is the induced subgraph G[B(v, T)], together

with possible labelings.

3.2 Automata
In Section 3.7, I need nondeterministic unary semiautomata to define path-flexibility
for locally checkable labeling problems. In the following, I define them.

The word unary in the definition means that the automaton is defined over input
alphabet with only one symbol. This can be interpreted as the automaton not having
an input. The word semiautomaton means that the automaton does not produce
output either, and hence the automaton does not have any accepting states or a start
state.

Definition 3.8 (Nondeterministic finite unary semiautomaton [17, p. 57]). A non-
deterministic finite semiautomaton M over unary alphabet is a pair (Q, δ) where

1. Q is a finite set of states.
2. δ is the transition function which that takes a state in Q and returns a subset

of Q. The returned subset represents the possible next states of the automaton.

The execution of semiautomaton M starts at a nondeterministic state q0 of Q.
In each subsequent step i ≥ 1, the next state qi of the automaton is chosen in a
nondeterministic way from set δ(qi−1).

An automaton can be thought as a directed graph. Each state of the automaton
corresponds to a node, and each possible state transition corresponds to an edge. In
particular, each node q has outgoing edges to nodes of set δ(q). In later parts of this
thesis, I visualize automata in this way.

3.3 Online graph algorithms
In this thesis, I study the online-LOCAL model of computation. The online-LOCAL
model combines the power of online graph algorithms and LOCAL algorithms. In
this section, I define online graph algorithms, and in the following two sections, I
define the LOCAL model and the online-LOCAL model.

Online graph algorithms are algorithms which need to maintain a valid solution
for a problem while an adversary reveals nodes one-by-one. When a node is revealed
to the algorithm, the algorithm needs to decide an output label for it. The algorithm
can base this decision only on the nodes it has seen so far, the order in which it has

21

seen the nodes, and the subgraph induced by those nodes. Once the algorithm has
decided a label for the node, it cannot be changed anymore. The adversary reveals
the next node to the algorithm only after all previously revealed nodes have been
labeled.
Definition 3.9 (Online graph algorithms [2]). Let G = (V, E) be a graph, and let
π = v1, v2, . . . , vn be an ordering of vertices V . Let πi = v1, v2, . . . , vi be the first i
nodes of the sequence, and let

Gi = G
[︂
{v1, v2, . . . , vi}

]︂
be the subgraph of G induced by πi.

The adversary reveals the nodes one-by-one to the algorithm in the order defined
by π. When a node vi is revealed to the algorithm, the algorithm must decide the
output for that node based on only the sequence of nodes πi and the subgraph Gi

induced by those nodes.

3.4 Distributed models of computation
In this section, I define the LOCAL model the sequential-LOCAL model which is an
intermediate model between the LOCAL and the online-LOCAL models.
Definition 3.10 (The LOCAL model [18]). The LOCAL model, introduced by
Linial [18], models a distributed system as a network of computers with unlimited
processing capabilities that are connected to each other using unbounded commu-
nication links. More formally, the network of computers forms a graph G = (V, E)
where each computer is represented by a node, and each communication link by
an edge. Each computer of the network is associated a unique identifier from
set {1, 2, . . . , poly(|V |)}. The unique identifiers are assigned to the nodes by an
adversary.

The execution of a LOCAL algorithm proceeds in synchronous rounds. At the
start of the execution, each nodes knows its local input, including its unique identifier,
and a polynomial approximation of the size of the input graph. In each round of
execution, every node sends a message to each of its neighbors and updates its state
based on the messages it receives.

In T rounds of execution, every node collects all information that other nodes
in their radius-T neighborhoods have—that is, each node establishes a view of its
radius-T neighborhood. The nodes then decide their output based on this view of
their neighborhoods. In other words, a LOCAL algorithm is a function which maps
local neighborhoods to output labels.

LOCAL algorithms can be designed either from the view point of message passing
or from the view point of mappings from neighborhoods to labels. In this thesis,
I mostly use the latter view point. For a nice introduction to message passing, I
recommend the lecture notes by Hirvonen and Suomela [16, pp. 37–88].

One of the challenges with the LOCAL model is that the nodes cannot break
symmetry easily. To allow easier symmetry breaking for algorithms, the sequential-
LOCAL model was introduced by Ghaffari et al. [13].

22

Definition 3.11 (The sequential-LOCAL model [13]). Let G = (V, E) be a graph
like in the LOCAL model, and let π = v1, v2, . . . , vn be an adversarially-chosen
ordering of nodes V . Each node is equipped with local memory. The nodes of the
graph are processed in the order given by π. When a node gets processed, it gets to
see its radius-T neighborhood along with the memories of all nodes that have been
processed earlier in that neighborhood. The node then needs to decide its output
and what to store in its memory based on this information.

It is easy to see that anything solvable in T rounds in the LOCAL model is also
solvable with locality T in the sequential-LOCAL model: The sequential-LOCAL
algorithm can just ignore the memories of other nodes in its neighborhood.

One interesting property of the sequential-LOCAL model, compared to the
LOCAL model, is that the complexity class Θ(log∗ n) collapses to O(1). This comes
from the fact that any o(log n) LOCAL algorithm can be normalized into an algorithm
that first finds a distance-k coloring of the graph in O(log∗ n) locality, and then does
O(1) local processing. Because distance-k coloring can be found in O(1) locality
in the sequential-LOCAL model, any o(log n)-locality LOCAL algorithm can be
turned into an O(1)-locality sequential-LOCAL algorithm. This is formalized in the
following observation:

Observation 3.12. Let A be a LOCAL algorithm solving an LCL problem Π with
locality o(log n). There exists a sequential-LOCAL algorithm A′ solving problem Π
with locality O(1). This also implies that there exists an O(log∗ n)-locality LOCAL
algorithm for solving Π.

3.5 The online-LOCAL model
To unify the study of online and distributed algorithms, we introduced the online-
LOCAL model in our manuscript [1]. Algorithms in the online-LOCAL model can
be viewed as online graph algorithms which—instead of seeing the graph one node
at a time—get to see the graph one neighborhood at a time. In particular, when a
node is revealed to the algorithm, it also gets to see the whole neighborhood of that
node before needing to decide the output for the node. Equivalently, the algorithm
is shown nodes one node at a time, but it can delay its decision until it has seen the
whole neighborhood.

Definition 3.13 (The online-LOCAL model [1]). Let G = (V, E) be a graph, and
let π = v1, v2, . . . , vn be an ordering of vertices V . Let πi = v1, v2, . . . , vi denote the
first i nodes of sequence π, and let

Gi = G
[︃ i⋃︂

j=1
B(vj, T)

]︃

be the subgraph induced by the radius-T neighborhoods of these nodes. When the
adversary presents node vi, the algorithm has to label vi based on πi and Gi.

23

Again, it is easy to see that anything solvable with locality T in the sequential-
LOCAL model is also solvable with locality T in the online-LOCAL model. It is also
easy to come up with a labeling problem that is solvable in the online-LOCAL model
with locality 0 but requires Ω(n) locality in the LOCAL model. One such problem
is “Label at least one node with the number of nodes in the graph”. However, this
problem is not locally verifiable and therefore is not a locally checkable labeling
problem (see the next section for the definition).

One interesting property of the online-LOCAL model is that the unique identifiers
provide no help:
Lemma 3.14. Consider an online-LOCAL algorithm A with locality T . There exists
another online-LOCAL algorithm A′ with locality T which does not use identifiers of
nodes.

Proof. Let A be as in the statement of the lemma. Algorithm A′ relabels all nodes it
sees for the first time by consecutive integers. It then runs A using these new labels
as identifiers. As A must work for any graph in any order and with any assignment
of unique identifiers, it must also work correctly when A′ uses it.

When restricting attention to LCL problems, it is no longer clear that the online-
LOCAL model is stronger than the LOCAL model. In fact, I prove in this thesis that
the online-LOCAL model is approximately equally powerful to the LOCAL model.
In Section 4, I provide a simplified version of the proof shown in our manuscript [1]
for directed paths. Note that directed paths can be seen as a special case of rooted
trees with δ = 1. In Section 5, I extend the result to hold also in general rooted trees
with δ ≥ 2.

3.6 Locally checkable labeling problems
The family of graph problems studied in this thesis are locally checkable labeling (LCL)
problems. The LCL problems can be defined by first defining labeling problems,
then restricting those to locally verifiable problems, and finally restricting those to
locally checkable problems.

Even though the definition of LCL problems may seem restrictive at first, many
natural graph problems can be encoded as LCL problems. These include vertex
coloring and edge coloring with constant number of colors, maximal independent set,
maximal matching, and vertex and edge cover, among others. Also combinations of
LCL problems are LCL problems: “Find a maximal independent set and a 3-coloring
of the graph”, and “Find a vertex cover or an edge cover of the graph” are both
LCL problems.

In this thesis, the LCL problems are considered to be input-free. In the general
case, LCL problems can have inputs, but Balliu et al. [3] have shown that it is
PSPACE-hard to decide whether an LCL problem with inputs in paths can be
solved in O(1) locality in the LOCAL model, or whether it requires Ω(n) locality.
Nevertheless, Chang et al. [11] have shown that there exist efficient algorithms for
deciding the complexity of input-free LCL problems in directed and undirected paths,
and Balliu et al. [5] have extended these results for rooted trees.

24

Definition 3.15 (Labeling problem). Consider a family of graphs G and an (output)
label set Σ. A labeling of a graph G = (V, E) ∈ G is a function L : V → Σ. A
labeling problem Π associates a set of valid output labelings L for every possible
graph G ∈ G. This assignment of valid output labelings must be invariant under
graph isomorphism.

Definition 3.16 (Locally verifiable labeling problem). A labeling problem Π is locally
verifiable with checking radius r if there exists a set of valid local neighborhoods T such
that L is a valid labeling if and only if, for every node v, the radius-r neighborhood
of node v in (G, L) is in T . In other words, a labeling L is valid if every local
neighborhood of G looks valid.

Definition 3.17 (Locally checkable labeling problem). A labeling problem Π is
locally checkable if it is locally verifiable, label set Σ is finite, and the degree of all
nodes in all graphs of G is at most some constant ∆.

A really interesting LCL problem is the sinkless orientation problem. Introduced
by Brandt et al. [7], it was the first LCL problem for which an exponential separation
between deterministic and randomized LOCAL model could be proved [9]. The
problem requires that the edges of the graph are oriented such that no vertex is a
sink. In other words, every vertex has at least one outgoing edge. In trees, the leaves
are allowed to be sinks.

Not all graph problems are locally checkable labeling problems, though. For
example maximum independent set is not locally verifiable as checking whether an
independent set is the largest possible is a global property of the graph. Another
inherently global problem is finding a spanning tree of a graph. This is because it
is not possible to locally check whether the formed candidate spanning tree does
not contain a loop. It is also difficult to check that all nodes belong to the same
spanning tree.

For another example of a non-LCL problem, consider the maximal fractional
matching problem. The maximal fraction matching problem requires that each edge
of the graph is assigned a nonnegative rational weight. The weight of a node is the
sum of the weights of its adjacent edges. The weights must be assigned so that the
weight of every node is at most 1, and for every edge, at least one of the endpoints has
weight 1. The maximal fractional matching problem is a locally verifiable problem
but is not a locally checkable labeling problem because the set of possible weights is
not finite.

As a final example, consider the vertex coloring problem. The vertex coloring
problem in bounded-degree graphs with finite number of colors is an LCL problem.
Allowing the coloring include an infinite number of colors makes the problem a non-
LCL. Similarly, relaxing the setting to include graphs having nodes with unbounded
degrees also makes the problem a non-LCL. This is because the LCL problems require
that the maximum degree of the graph is bounded.

Observe that the checking radius r of an LCL problem can be made 1 without
loss of generality:

25

Observation 3.18 (Checking radius speedup). Consider an LCL problem Π with
checking radius r. There exists another LCL problem Π′ with checking radius 1 such
that a solution to Π′ can be turned into a solution of Π by a local mapping.

Proof. The idea is that each label σ ∈ ΣΠ′ encodes a radius-r neighborhood of a
solution of Π. A labeling L′ is a valid solution for Π′ if the neighborhoods encoded
by labels of adjacent nodes are compatible and the underlying labeling L is valid
according to Π.

A valid labeling L′ for Π′ can be turned into a valid labeling L for Π by removing
the information of the neighborhood from the labels of L′. This can be done locally
by each node checking its own label in the neighborhood given by L′.

Note that problem Π′ is an LCL problem: The underlying family of graphs is the
same as for Π, and hence the degrees of nodes are bounded, the labeling is locally
verifiable, and the number of possible radius-r neighborhoods is finite and therefore
label set ΣΠ′ is finite.

This thesis focuses on solving LCL problems in rooted trees. To allow deciding
the solvability of LCL problems in various models of computation, a formal definition
for LCL problems in rooted trees is needed. I borrow the definition from Balliu
et al. [5]:

Definition 3.19 (LCL problem in rooted trees [5]). An LCL problem Π in rooted
trees is a triple (δ, Σ, C) where:

• δ is the number of allowed children.
• Σ is a finite set of (output) labels.
• C is a set of tuples of size δ + 1 from Σδ+1 called allowed configurations.

Each allowed configuration (a : b1, b2, . . . , bδ) ∈ C states that a node with label a is
allowed to have children with labels b1, b2, . . . bδ in some order. Nodes having more
than or less than δ children are unconstrained and any configuration of labels is valid
for them; otherwise input labels could be encoded into the structure of the graph.

Note that this definition is compatible with the previous definition of LCL
problems, with the minor change that only the configurations of nodes with exactly
δ children are constrained.

Any LCL problem in rooted trees can be described by listing the set of allowed
configurations; the number of children δ and the label set Σ can be inferred from
the configurations. For the purposes of describing concrete LCL problems, the
following succinct notation for listing configurations is adopted from LCL Classifier
tool [24], which in turn adopts it from the notation used by the Round Eliminator
tool developed by Olivetti [21].

26

Definition 3.20 (LCL notation). An LCL problem Π is described by a set of lines
where each line encodes one or more allowed configuration. The line

a: bc de

reads as “nodes having label a can have their children be labeled with any combination
of labels containing either b or c, and either d or e.” More concretely, this includes
the following configurations:

(a : bd) (a : be) (a : cd) (a : ce)

For example, the 3-coloring problem in binary trees can be encoded as

A: BC BC
B: AC AC
C: AB AB

Here a node with label A can have its children be labeled with any combination of
labels B and C. In particular, a node with label A cannot have a child labeled with A.
The other two lines provide similar restrictions for nodes with labels B and C.

Maximal matching in rooted trees with δ = 3 can be encoded as

D: U D0 D0
U: D0 D0 D0
0: D D0 D0

Here label D denotes that a node is matched with its child, label U denotes that a
node is matched with its parent, and label 0 denotes that a node is unmatched. Note
that configuration (0 : 000) is omitted as a node with such configuration could be
matched with one of its children and hence the matching would not be maximal.

3.7 LCLs as automata: path-form and path-flexibility
There are many ways to study the properties of LCL problems. One of the more
interesting ones was introduced by Chang et al. [11]. They showed how LCL problems
in paths and cycles can be turned into finite automata, and how the properties of the
automata can be used to infer the complexity of the corresponding LCL problem.

In this thesis, I study rooted trees and not just paths. Nevertheless, the tools
developed for paths can also be extended to rooted trees by defining a path-form of
an LCL problem. The path-form can be seen as a relaxation of the original problem
defined in rooted trees; instead of looking at all of the children together, in the
path-form every child of a node is considered separately. In other words, every child
of a node must have a compatible label with their parent, but the combination of
the labels of the children does not matter. It is therefore clear that any lower bound
for the path-from also extends to become a lower bound for the original problem.

Definition 3.21 (Path-form of an LCL problem [5]). Let Π = (δ, Σ, C) be an LCL
problem in rooted trees. The path-form of Π is an LCL problem Πpath = (1, Σ, C ′) in
directed paths, where a configuration (a : b) belongs to C ′ if and only if there exists
a configuration (a : b1, b2, . . . , bδ) in C with b = bi for some i.

27

The path-form of an LCL problem constructed this way can be turned into a
nondeterministic finite automaton over unary alphabet. The intuition is that a path
is correctly labeled if and only if the automaton can visit the states in the same
order as they appear on the path.

Definition 3.22 (Automaton associated with path-form of an LCL problem [11]).
Let Π = (δ, Σ, C) be an LCL problem, and let Πpath be the corresponding path-form.
Automaton M(Π) associated with the path-form of Π is a nondeterministic unary
semiautomaton. The set of states is Σ, and the automaton has a transition a → b if
configuration (a : b) is a configuration of Πpath.

An important property of a state of an automaton is flexibility. The flexibility of
a state corresponds to path-flexibility of a label of an LCL.

Definition 3.23 (Flexible state of an automaton [8]). Let σ be a state of au-
tomaton M. State σ is a flexible state if there exists a constant K such that for
every d ≥ K, there exists a walk σ ⇝ σ in M with length d.

Definition 3.24 (Path-flexibility [5]). Let Π = (δ, Σ, C) be an LCL problem in
rooted trees. A label σ in Σ is path-flexible if σ is a flexible state of automaton M(Π).
Otherwise, the label is said to be path-inflexible.

The intuition behind the concept of path-flexibility relates to how the label can
be used when labeling a long path. If a label is path-flexible, then it can be used to
label nodes that are at least distance K apart without knowing the exact distance
between them. This is because for any distance of at least K, there exists a sequence
of transitions in the automaton from the state corresponding to the label back to
itself with that length. Therefore, the path can be labeled with labels corresponding
to the visited states. If, on the other hand, a label is path-inflexible, then two nodes
having that label can exist only at certain possible distances from each other.

For example, consider the problem of 2-coloring a path with labels 1 and 2. The
corresponding automaton is visualized in Figure 1, along with the automaton for
the 3-coloring problem. Both of the labels are path-inflexible. This means that
no matter how far two nodes with label 1 (or 2) are from each other, the distance
between them must be even. On the other hand, the labels of 3-coloring problem are
path-flexible. For example, all the following 3-colorings of a path are valid:

1 2 1

1 2 3 1

1 2 3 2 1

It is easy to convince oneself that for any distance of at least 2, there exists a valid
3-coloring of a path having nodes with label 1 that far apart.

The path-flexibility of a label can be extended to include two labels. The intuition
is the same as with path-flexibility of individual labels; both of the labels of a path-
flexible pair can be used to label far-away nodes without knowing their exact distance.

28

1 2

1 2

3

Figure 1: Automata associated with the 2-coloring and the 3-coloring problems.
Both of the states in the left automaton are inflexible because there exists only walks
with even length back to themselves. In the right automaton, all of the states are
flexible because for every length of at least 2, there exist a path with that length
from any state back to itself.

Lemma 3.26 relates the path-flexibility of a pair to the path-flexibility of individual
labels forming the pair.

Definition 3.25 (Path-flexible pair). Let Π be an LCL problem in rooted trees.
A label pair (σ1, σ2) is path-flexible if there exists some constant K such that for
every d ≥ K, there exists walks σ1 ⇝ σ2 and σ2 ⇝ σ1 in M(Π) such that the lengths
of both walks are d. Otherwise the pair is path-inflexible.

Lemma 3.26. Let Π be an LCL problem in rooted trees. A label pair (σ1, σ2) is
path-flexible if and only if both σ1 and σ2 are separately path-flexible and belong to
the same strongly connected component of M(Π).

Proof. It is easy to see that if both σ1 and σ2 belong to the same connected component
and are path-flexible, then the label pair (σ1, σ2) is also path-flexible. If the labels
do not belong to the same strongly connected component, then at least one of
paths σ1 ⇝ σ2 or σ2 ⇝ σ1 does not exist, and hence the pair cannot be path-flexible.

The only case left to show is that if the pair is path-flexible, then both σ1 and
σ2 are separately path-flexible. For contradiction, assume w.l.o.g. that σ1 is path-
inflexible but pair (σ1, σ2) is path-flexible. Then there exists some constant K such
that for every d1, d2 ≥ K there exists walks σ1 ⇝ σ2 and σ2 ⇝ σ1 with lengths d1, d2,
respectively. But then for every d ≥ 2K, there exists a walk σ1 ⇝ σ2 ⇝ σ1
with length exactly d by keeping walk σ1 ⇝ σ2 constant and varying the length
of walk σ2 ⇝ σ1 accordingly. This means that σ1 is path-flexible, and this is a
contradiction. Hence the lemma must be true.

The final lemma regarding path-flexibility states that if there exist nodes with
path-inflexible labels, then it is easy to find a way to connect the nodes in such
a way that the labeling cannot be completed. Hence if an algorithm labels two
distant nodes with labels that form a path-inflexible pair, an adversary can force the
algorithm to fail by making sure that the distance between the nodes is such that
the path connecting the nodes cannot be labeled.

Lemma 3.27. Let Π be an LCL problem in rooted trees, and let (σ1, σ2) be a path-
inflexible pair in Π. Then for every pair of constants p1, p2 ∈ N, not all of the
following walks can exist in M(Π):

29

I a walk σ1 ⇝ σ2 of length p1,
II a walk σ1 ⇝ σ2 of length p1 + 1,

III a walk σ2 ⇝ σ1 of length p2, and
IV a walk σ2 ⇝ σ1 of length p2 + 1.

Proof. Assume for contradiction that all of the walks existed. Then the claim is
that there exists some K such that for every d ≥ K there exists walks σ1 ⇝ σ2 and
σ2 ⇝ σ1 of length exactly d, and therefore (σ1, σ2) is a path-flexible pair.

Such walks can be constructed. Consider the following compositions of walks
from σ1 back to σ1:

W1 Walk along I to go from σ1 to σ2, and then take walk III to go back to σ1.
W2 Walk along I to go from σ1 to σ2, and then take walk IV to go back to σ1.

Walk W1 has length p1 +p2, and walk W2 has length p1 +p2 +1. Combining walks W1
and W2 repeatedly makes it possible to construct a walk from σ1 back to itself for
any length at least K ′ = (p1 + p2)(p1 + p2 − 1) [22].

A similar construction can be used to construct a walk from σ2 back to itself
for any length at least K ′. Combining these with walks I and III, it is possible to
construct walks σ1 ⇝ σ2 and σ2 ⇝ σ1 for any length d at least K = K ′ +max(p1, p2).
Hence pair (σ1, σ2) is path-flexible.

3.8 Iterated logarithm
Iterated logarithm is a very slowly growing function that is often encountered in
the analysis of LOCAL algorithms. It appears especially in cases where the sizes of
sets can be repeatedly made exponentially smaller, such as in the color reduction
algorithm by Cole and Vishkin [12]. The iterated logarithm measures how many
times a logarithm needs to be taken before the value reaches 1.

Definition 3.28 (Iterated logarithm log∗). Iterated logarithm log∗ is a function
from positive real numbers R+ to natural numbers N defined recursively as follows:

log∗ n =

⎧⎨⎩0 if n ≤ 1
1 + log∗(log2 n) otherwise

For all practical purposes, the value of iterated logarithm can be considered to
be a constant. In particular, log∗ n ≤ 5 for all n ≤ 265536.

30

31

4 Locally checkable labeling problems in directed
paths

In this section, I study the locality of LCL problems in the online-LOCAL model
by looking at directed paths. The directed paths are an important special case of
rooted trees: They are rooted trees where every node has at most one child.

In directed paths, it is well known that the possible complexities of locality for
LCL problems in the traditional LOCAL model are O(1), Θ(log∗ n) and Ω(n) [3].
In this section, I prove that an online-LOCAL algorithm with locality o(n) implies
the existence of a LOCAL algorithm with locality O(log∗ n). This, combined with
Observation 3.12, shows that the only possible locality complexities in directed
paths in the online-LOCAL model are O(1) and Ω(n). Moreover, the LCL problems
solvable in locality O(1) in the online-LOCAL model coincide with the problems
that are solvable in O(log∗ n) in the LOCAL model.

Formally, I prove the following theorem:

Theorem 1.1 (Equivalence in directed paths). Let Π be an LCL problem in directed
paths. If the problem is solvable with locality T in the online-LOCAL model, then it
is solvable with O(T + log∗ n) locality in the LOCAL model.

The theorems and proofs in this section are simplifications from our manuscript [1].
In particular, only LCL problems without inputs and in directed paths are considered.
Moreover, any constraints near the ends of the paths are ignored. This is because I
want to be more consistent with the definition of LCL problems in rooted trees. For
the more complicated proof that includes both cycles and paths, special conditions
for endpoints, and inputs, I refer the reader to read our manuscript [1].

Before moving to prove Theorem 1.1, I define what I mean by LCL problems in
directed paths.

Definition 4.1 (LCL problems in directed paths). An LCL problem Π in directed
paths is a pair (Σ, C) where:

• Σ is a finite set of labels.
• C is a set of pairs from Σ2 called allowed configurations.

Each allowed configuration (a : b) ∈ C states that a node with label a can have a
predecessor with label b.

Note that this definition orders the labels in the opposite order to the definition
of the edges. Consider two nodes u and v connected by an edge (u, v). Configu-
ration (a : b) means that node u can be labeled with b and node v can be labeled
with a. I do this in order to make this definition compatible with the definition of
LCL problems in rooted trees, presented in Definition 3.19.

32

C2-coloring =

⎧⎪⎪⎨⎪⎪⎩
1

2
,

2

1

⎫⎪⎪⎬⎪⎪⎭
C3-coloring =

⎧⎪⎪⎨⎪⎪⎩
1

2
,

1

3
,

2

1
,

2

3
,

3

1
,

3

2

⎫⎪⎪⎬⎪⎪⎭
Ccounting =

⎧⎪⎪⎨⎪⎪⎩
1

2
,

2

3
,

3

1
,

3

4
,

4

1

⎫⎪⎪⎬⎪⎪⎭

Figure 2: Visualizations of allowed states for the 2-coloring, the 3-coloring, and
the counting problems.

Consider the counting problem that is defined as follows:

1: 2
2: 3
3: 14
4: 1

In the counting problem, every node labeled with 1 must be separated by distance 3
or 4. This constraint is encoded by ensuring that the labels count to either 3 or 4
before another 1 is allowed to occur. Figure 2 visualizes the allowed configurations
for the counting problem along with the configurations for the 2-coloring and the
3-coloring problems.

The 2-coloring problem requires Ω(n) locality in both the LOCAL and the
online-LOCAL models while the 3-coloring and the counting problem are solvable in
O(log∗ n) locality in the LOCAL model and in O(1) locality in the online-LOCAL
model.

Instead of proving Theorem 1.1 directly, I prove the following lemma:

Lemma 4.2 (LOCAL simulation of sub-linear online-LOCAL algorithms). Let Π be
an LCL problem in directed paths, and let A be an online-LOCAL algorithm solving
problem Π with locality T (n) = o(n). Then, there exists a LOCAL algorithm A′

solving Π with locality O(log∗ n).

It is easy to see that this directly implies Theorem 1.1: If the problem requires
Ω(n) locality in the online-LOCAL model, then it clearly does so also in the LOCAL
model. On the other hand, if the problem is solvable with sub-linear locality in
the online-LOCAL model, it can be solved with locality O(log∗ n) in the LOCAL
model. This then implies that the same problem is solvable with locality O(1) in the
online-LOCAL model.

33

The high-level idea of the proof is to use the sub-linear-locality online-LOCAL
algorithm to find a label that can be used to label far-away nodes on the path such
that the labeling is always completable. A LOCAL algorithm can then shatter the
path into approximately constant-length segments and label the endpoints of those
segments with this label. The choice of the label ensures that the labeling on the
connecting segments is completable.

Before the proof, I formalize the shattering that the LOCAL algorithm does by
defining ruling sets.

Definition 4.3 ((α, β)-ruling set [5]). An (α, β)-ruling set R of a graph G = (V, E)
is a subset of nodes V such that for every pair of nodes v, u in R such that v ̸= u, it
holds that dist(v, u) ≥ α, and for every node v in V \ R, there exists at least one
node u in R such that dist(v, u) ≤ β.

The ruling set is useful because nodes belonging to the set are apart at a distance
of at least α, but they cannot be too far apart. This is formalized in the following
observation:

Observation 4.4. The distance between two elements of an (α, β)-ruling set is at
most α + β.

Lemma 4.2 can now be proven.

Proof of Lemma 4.2. Let Π = (Σ, C) be an LCL problem in directed paths, and
let A be an online-LOCAL algorithm solving Π with locality T (n) = o(n). Then
there exists some constant n0 such that for every n > n0 the following holds

(|Σ| + 2)(2T (n) + 3) < n.

Fix such n, and let β = T (n) + 1.
Construct a graph P consisting of |Σ| + 1 disjoint directed path segments, each of

length 2β + 1, and let the middlemost nodes on those paths be vi. Note that the size
of graph P is at this point (|Σ| + 1)(2β + 1) < n. Execute algorithm A on nodes vi

in an arbitrary order. The structure of graph P at this point is under-specified,
but the execution of algorithm A on nodes vi is well-defined. This is because the
locality of A is β − 1 but the length of the path segments is 2β + 1, and therefore
the algorithm does not see the endpoints of the segments.

The algorithm must produce some labels for all nodes vi. By the pigeonhole
principle, at least two nodes are labeled with the same label σ. Label σ is the
canonical label which the LOCAL algorithm can use to label far-away nodes of the
graph. In the following, I present a three-step LOCAL algorithm A′ for solving Π
with locality O(log∗ n).

1. Algorithm A′ starts by constructing a distance-2β coloring of the path; this
can be done with locality O(log∗ n), as shown by Cole and Vishkin [12]. The
algorithm then uses this coloring to construct a (2β, 2β)-ruling set R of the input
graph. This can be done with constant locality by using the above-constructed
coloring as a schedule for the greedy algorithm.

34

2. Algorithm A′ labels the nodes in the ruling set R with σ.

3. By the construction of label σ, there exists a valid labeling for the segments
between the nodes of the ruling set R. There is only a constant number of
possible lengths that a path segment connecting two nodes of R can have.
Hence the labelings for all different path lengths can be constructed offline,
and algorithm A′ can recall the labeling with constant locality.
To see why such labelings exist, consider two nodes u and v that are adjacent
in the ruling set R. The distance between nodes u and v is at least 2β but at
most 4β. Let u′ and v′ be two nodes that algorithm A labeled with label σ in
graph P . Identify u and v with u′ and v′, respectively. Add nodes between u′

and v′ such that their distance is equal to the distance of u and v. Because the
distance is at least 2β, the radius-(β − 1) neighborhoods of u′ and v′ do not
change and hence the execution of A remains valid. Now algorithm A must
be able to produce a valid labeling for the path connecting u′ and v′. As this
path is isomorphic with the path connecting u and v, the labeling must also
be valid in the original graph.

The existence of algorithm A′ is sufficient to prove the lemma.

This lemma directly implies Theorem 1.1, thus concluding this section. In the
next section, I classify all LCL problems in the more general case of rooted regular
trees with δ ≥ 2.

35

5 Locally checkable labeling problems in rooted
regular trees

In this section, I show that all LCL problems in rooted regular trees fall into one
of the following complexity classes in the online-LOCAL model: O(1), Θ(log n), or
nΩ(1). I base my results on the previous work by Balliu et al. [5] who have shown
that in the LOCAL model, the possible complexity classes for LCL problems in
rooted regular trees are O(1), Θ(log∗ n), Θ(log n), and nΩ(1). The upper bounds
for the LOCAL model presented in their paper directly give upper bounds for the
online-LOCAL model. I extend their proofs for the lower bounds to work also in the
online-LOCAL model. This shows that the complexity classes for LCL problems in
both models are exactly the same, apart from classes O(1) and Θ(log∗ n) that are
collapsed into O(1) in the online-LOCAL model, as per Observation 3.12. Note that
the result also directly applies to the sequential-LOCAL model.

Formally, I show the following two theorems:

Theorem 1.2 (Equivalence in rooted trees, super-logarithmic region). Let Π be an
LCL problem in rooted trees. Problem Π requires locality nΩ(1) in the online-LOCAL
model exactly when it requires nΩ(1) locality in the LOCAL model.

Theorem 1.3 (Equivalence in rooted trees, sub-logarithmic region). Let Π be an LCL
problem in rooted trees. Problem Π requires locality Ω(log n) in the online-LOCAL
model exactly when it requires Ω(log n) locality in the LOCAL model.

This section is structured as follows: In Section 5.1, I present an example LCL
problem and show that it requires locality Ω(

√
n) in the online-LOCAL model. I

then generalize the proof technique to all LCL problems and prove Theorem 1.2 in
Section 5.2. Both of these sections rely on the path-flexibility defined in Section 3.7.
In Section 5.3, I show that all problems solvable in o(log n) locality in the online-
LOCAL model are solvable in O(log∗ n) locality in the LOCAL model. This can be
combined with Observation 3.12 to get a locality-O(1) online-LOCAL algorithm.

5.1 21
2-coloring requires Ω(

√
n) locality in the online-LOCAL

model
In this section, I present an example LCL problem that requires Ω(

√
n) locality

in the online-LOCAL model. The problem is so-called 21
2 -coloring problem, first

introduced by Chang and Pettie [10].
Informally, the 21

2 -coloring problem requires 2-coloring the tree near the root
with labels A and B, and near the leaves with 1 and 2. The different 2-colored
parts can be combined using an intermediate label X. Figure 3 visualizes the allowed
configurations for the 21

2 -coloring problem. I define the 21
2 -coloring problem formally

in the following.

36

CΠ2 1
2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

B B
,

A

X X
,

A

B X
,

B

A A
,

B

X X
,

B

A X
,

1

2 2
,

2

1 1
,

X

1 A
,

X

1 B
,

X

1 1
,

X

1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
Figure 3: Allowed configurations for the 21

2 -coloring problem Π2 1
2
. Only the first row

of configurations are allowed for the restricted 21
2 -coloring problem Π′

2 1
2
.

Definition 5.1 (Π2 1
2
). 21

2 -coloring is defined in the formalism presented in Defini-
tion 3.20 as

A: BX BX
B: AX AX
X: 1 AB12
1: 2 2
2: 1 1

The reason for naming the problem 21
2 -coloring is that any valid 2-coloring is

also a valid 21
2 -coloring, and any valid 21

2 -coloring can be transformed into a valid
3-coloring by mapping A ↦→ 1 and B ↦→ 2. Hence the 21

2 -coloring problem is at least
as hard as the 3-coloring problem, but at most as hard as the 2-coloring problem.

By analyzing the problem description of Π2 1
2
, and the automaton associated with

its path-form shown in Figure 4, the following observation can be made:

Observation 5.2. The labels 1 and 2 are path-inflexible in problem Π2 1
2
. This is

because any path between two nodes labeled with labels 1 and 2 must form a valid
2-coloring. Denote the set of path-inflexible labels by

Σ1 = {1, 2 }.

Problem Π2 1
2

can be restricted by removing these labels from the set of possible
labels. This gives the following restricted problem Π′

2 1
2
:

Definition 5.3 (Π′
2 1

2
). The restricted 21

2 -coloring is defined in the formalism pre-
sented in Definition 3.20 as

A: BX BX
B: AX AX
X:

Here again analyzing the problem description of Π′
2 1

2
, and the automaton associ-

ated with its path-form shown in Figure 4, gives rise to the following observation:

37

A B

X

1 2

A B

X

Figure 4: The automaton associated with path form of problem Π2 1
2

on the left, and
the automaton associated with the path from of Π′

2 1
2

on the right. In the automaton
on the left, the states A, B and X are path-flexible as there exist walks from them
back to themselves for all lengths of at least 2. The states 1 and 2 are path-inflexible
as only self walks with even lengths are possible. On the right, all states A, B and X
are path-inflexible. States A and B have only even-length self-walks. The state X has
no self-walk.

Observation 5.4. All labels A, B and X are path-inflexible in problem Π′
2 1

2
. This is

because the label X cannot be used to label any internal nodes of the tree, and therefore
problem Π′

2 1
2

is (almost) a regular 2-coloring problem with labels A and B. Denote the
set of inflexible labels by

Σ2 = {A, B, X }.

The lower-bound construction for 21
2 -coloring relies on the fact that an algorithm

solving Π2 1
2

cannot use labels 1 and 2 to label two nodes without seeing how the
nodes are connected to each other. Otherwise, the adversary could alter the length
of the path connecting the nodes such that the labeling cannot be completed. This
is because labels 1 and 2 are path-inflexible, as noted in Observation 5.2.

Nevertheless, any sufficiently local algorithm can be forced to use labels 1 and
2 in far-away parts of the graph using the following trick: Show the algorithm two
fragments of the graph such that the algorithm does not know how they are connected.
Based on the previous observation, the algorithm must use labels A, B and X to label
the shown nodes. By Observation 5.4, the labels A, B and X are path-inflexible in the
restricted 21

2 -coloring problem Π′
2 1

2
. Hence the adversary can connect the fragments

in such a way that the no valid labeling satisfying the restricted problem Π′
2 1

2
exists for

the path connecting the two fragments, and therefore the algorithm must use labels 1
and 2 somewhere along the connecting path. The construction can be repeated to
create another node with label 1 or 2. By being careful with the construction, it can
be ensured that the algorithm has not seen how the two nodes having labels 1 and 2
are connected to each other, and hence the adversary can force the distance between
them to be such that no valid labeling for Π2 1

2
exists for the resulting tree.

Informally, the components that are shown to the algorithm are formed in the
following way: Let P be a directed path with x nodes from t to s, and let c be the
middlemost node on the path. Collectively call the nodes in path P layer-2 nodes,
and call node t the connector node. Identify each node in path P with the root of
another path with x + 1 nodes, and call the newly-created nodes layer-1 nodes. As

38

t

c

s

Figure 5: An example of a layered tree T 5
2 . The darkest purple nodes belong to

layer 2, the middle purple nodes belong to layer 1, and the lightest leaf nodes belong
to layer 0. Node s is the root, node t is the connector node, and node c is the
middlemost node on the core path.

the last step, for each layer-1 node add one child node, and call these nodes layer-0
nodes. The tree formed in this way is called T x

2 .
I illustrate the lower bound construction in this section using an algorithm with

locality T (n) = 1 and path length x = 5. The values are chosen to be small enough
for illustrations to fit on a page. Figure 5 shows an example of tree T 5

2 .
More formally, the layered tree is a form of a bipolar tree and is formed using

tree layering, both of which I define next:

Definition 5.5 (Bipolar tree [5]). A rooted tree T is a bipolar tree with pole nodes
sT and tT if the following holds:

1. sT is the root of T , and
2. the indegree of tT is δ − 1, that is node tT is missing one child.

The unique path connecting sT and tT is the core path of T . Node tT is called the
connector node of T .

39

Definition 5.6 (Tree layering [5]). Given a rooted tree T , define tree layering ⊕xT
as follows: Construct a path P = (v1, v2, . . . , vx) and x(δ − 1) copies of T . For each
node vi, identify δ − 1 of its children with a root of a copy of T such that every vi

has exactly δ − 1 copies of T as its children. Note that the last node vx has one
missing child. To make the tree bipolar, nodes s⊕xT and t⊕xT can be identified with
vx and v1, respectively.

A layered tree can now be defined in a recursive fashion. Note that the definition
constructs the tree from “bottom-up”, while in the example above the tree was
constructed in “top-down” order.

Definition 5.7 (Layered tree [5]). For each natural number constant x, define a
family T x

k of layered trees recursively as follows:

• T x
0 is a single node.

• T x
k for k ≥ 1 is defined as T x

k = ⊕xT x
k−1.

The recursive definition gives a natural notion of layer for each node: the layer of
a node is the index of the tree in which the node is first present. For example, the
leaves always belong to layer 0 and the root belongs to the highest layer.

With these definitions, the exact lower bound can be proven. The proof is
based on a simulation of an online-LOCAL algorithm A which supposedly solves the
21

2 -coloring problem with locality o(
√

n). An adversary simulates algorithm A on
disjoint graph fragments, and only after the algorithm has committed the labels for
some nodes, the adversary decides how the fragments are connected to each other.
In the following, I show how exactly the adversary can use the commitments of the
algorithm to construct an instance on which the algorithm fails.

Assume for contradiction that there existed an online-LOCAL algorithm A
solving the 21

2 -coloring problem Π2 1
2

with locality T (n) = o(
√

n). The adversary can
construct a failing instance GA as follows:

1. Construct 4 copies of tree T x
2 , namely G1, G2, G3, G4, with sufficiently large

constant x ≫ 2T (n) where n is the size of the graph. This is possible because
each copy of tree T x

2 has x+2x2 nodes, and hence the whole graph has 4x+8x2 <
16x2 nodes. By assumption, the locality of algorithm A is T (n) = o(

√
n), and

hence there exists some x such that

x ≫ 2T (16x2)

holds.

2. Reveal the center nodes on the core paths of trees Gi to algorithm A. The
algorithm must commit to some labels for these nodes without seeing the roots
or the connector nodes of the trees. This means that the algorithm does not
know how trees Gi are connected to each other. This is because x is larger than
the diameter of the view that is revealed to the algorithm. Figure 6 visualizes
an example of this situation.

40

1 X

A B

Figure 6: Trees G1, G2, G3 and G4. The algorithm has labeled the center nodes on
the core paths with 1, X, A and B. The neighborhoods that the algorithm has seen
are visualized by thicker lines around nodes.

41

1

1

1

1

Figure 7: Example for case I. Two ways to connect trees with labels from set Σ1.
In this example, the algorithm has decided to label both center nodes with label 1.
Note that in this visualization the chain of layer-1 nodes has been made shorter to
draw attention to layer 2; in reality there are more layer-1 and layer-0 nodes. On
the left, the root of the lower tree has been made a child of the connector node
of the upper tree, while on the right they have been identified as one node. The
distance between labeled nodes is 5 in the left tree and 4 in the right tree. Because
the distance between nodes labeled with 1 must be even, the labeling on the left tree
cannot be completed.

3. Consider now the following cases. In each one of them, the adversary can force
algorithm A to fail to produce a valid labeling:

I Algorithm A labels at least two of the center nodes of the trees
with labels from set Σ1:
Let v1 and v2 be two distinct center nodes labeled with labels σ1, σ2 ∈ Σ1,
respectively. Without loss of generality, it may be assumed that nodes v1
and v2 are the center nodes of trees G1 and G2. By Observation 5.2,
labels σ1 and σ2 are path-inflexible in Π2 1

2
, and hence pair (σ1, σ2) is a

path-inflexible pair by Lemma 3.26.
Consider two different ways of combining trees G1 and G2: The root of
tree G2 can be identified with the connector node of G1, or the root of

42

tree G2 can be made a child of the connector node. Figure 7 visualizes
both of these cases. In the former case, the length of the path between
nodes v1 and v2 is p, and in the latter case, it is p + 1. As p and p + 1
have different parity, only one of the walks σ1 ⇝ σ2 of length p and p + 1
can exist in M(Π2 1

2
). The adversary can choose the option for which the

walk of that length does not exist. This implies that there is no way to
label the path between v1 and v2 such that the labeling would be valid
according to the 21

2 -coloring problem Π2 1
2
. Hence the algorithm must fail.

II Algorithm A labels all center nodes of the trees with labels from
set Σ2:
In this case, two trees with labels from set Σ2 can be combined into one
tree with a label from set Σ1. By repeating this for both pairs of trees,
the adversary can construct two trees with labels from set Σ1 such that
the algorithm has not seen how the trees are connected. A contradiction
can then be derived using the construction from case I on these trees.
To see how to construct a tree with a label from set Σ1, consider two of
the trees, say G1 and G2. The corresponding center nodes are v1 and v2,
and their labels are σ1 and σ2, respectively. By Observation 5.4, labels σ1
and σ2 are path-inflexible in Π′

2 1
2
. Using a similar construction as in case I,

the adversary can construct a tree in which algorithm A cannot solve the
restricted problem Π′

2 1
2
. In particular, algorithm A must fail to solve Π′

2 1
2on the path connecting v1 and v2.

However, algorithm A is not actually trying to solve Π′
2 1

2
but Π2 1

2
, and

hence it can also use labels from set Σ1 to label some of the revealed
nodes. By revealing the nodes between v1 and v2, as well as their children,
to algorithm A, the adversary can force the algorithm to use a label from
set Σ1 for some revealed node v without showing the root of the tree to
the algorithm. Moreover, revealing node v does not let the algorithm see
the whole subtree rooted at v. In particular, the node at the end of a path
consisting of only layer-1 nodes is not shown to the algorithm. Therefore,
the adversary can use that node to connect the tree to another tree.
Note that this is the case where the structure of trees Gi comes into play.
The layered tree structure ensures that when node v is revealed to the
algorithm, it has not seen all layer-1 nodes in the subtree rooted at v.
This is because the algorithm has locality T (n), but the length of the
path consisting of layer-1 nodes has length x ≫ 2T (n). The layered tree
structure is also needed for proving the general result in Section 5.2.
Figure 8 shows an example of how two trees can be connected to force
the algorithm to use a label from set Σ1.

III Algorithm A labels exactly one of the center nodes of the trees
with label from set Σ1, and the rest of the center nodes from
set Σ2:
In this case, two of the trees whose center nodes have been labeled with
labels from set Σ2 can be combined like in case II to produce a tree with

43

a label from set Σ1. To force the algorithm to fail, this resulting tree can
then be combined with the tree original whose center node is from set Σ1,
just like in case I. Figure 9 shows an example of this.

This is an exhaustive list of cases. In all cases the adversary can force algo-
rithm A to fail to produce a valid labeling. Therefore, the assumption that
such an algorithm can exist must be false. The only assumption made about
algorithm A in step 1 is that it has locality T (n) = o(

√
n), and hence the

21
2 -coloring problem Π2 1

2
must require locality Ω(

√
n) in the online-LOCAL

model.

B

X

t

1

A

B

B

A

A

Figure 8: Example for case II. The adversary has connected trees G3 and G4, having
labels A and B, in such a way that no valid labeling for the restricted problem Π′

2 1
2exists for the tree. The algorithm has then labeled the nodes on the connecting

path, as well as their children. Because there is no valid labeling to the restricted
problem Π′

2 1
2
, the algorithm had to use a label from set Σ1 to label at least one node.

In this case, the algorithm has decided to use label 1. The node labeled with 1 is
node v from the text, and the node marked with t is the new connector node.

44

B

X

!

2

1

1

2

2

1

1

2

A

B

B

A

A

1

2

1

1

2

Figure 9: Example for case III. In this case, the adversary has first combined trees G3
and G4 to get a node with label 1. The adversary has then made tree G1 a child
of the connector node of the newly-formed tree. The algorithm has tried to label
all nodes on the path connecting the two labeled parts, but as there exists no valid
labeling for the path, the algorithm has failed to label the node marked with !.

45

5.2 Equivalence in super-logarithmic region
In the previous section, I showed an example on how to prove that an LCL problem
requires at least polynomial locality in the online-LOCAL model. In this section, I
generalize the proof for all LCL problems and prove the following theorem:

Theorem 1.2 (Equivalence in rooted trees, super-logarithmic region). Let Π be an
LCL problem in rooted trees. Problem Π requires locality nΩ(1) in the online-LOCAL
model exactly when it requires nΩ(1) locality in the LOCAL model.

By the previous work of Balliu et al. [5], it is known that LCL problems requiring
nΩ(1) locality in the LOCAL model have a very specific structure. In particular,
such problems can be decomposed into a hierarchical sequence of restricted problems
and the corresponding sequence of path-inflexible labels. The decomposition can be
constructed by repeatedly removing path-inflexible labels from the problem. More
formally, the decomposition is defined as follows:

Definition 5.8 (Path-inflexible decomposition). Let Π be an LCL problem in
rooted trees. Its path-inflexible decomposition consists of a sequence of problems
(Π0, Π1, . . . , Πk) and a sequence of labels (Σ1, Σ2, . . . , Σk). The sequences are defined
as follows:

1. Π0 = Π.
2. For each 1 ≤ i ≤ k, let Σi be the set of path-inflexible labels in Πi−1.
3. For each 1 ≤ i ≤ k, let Πi be the restriction of Π to Σ \ (Σ1 ∪ Σ2 ∪ · · · ∪ Σi).
4. The problem Πk is either an empty problem, or all of its labels are path-flexible.

Observation 5.9. Every problem in the sequence of problems (Π0, Π1, . . . , Πk), as
defined above, is a restriction of the previous one. In particular, a solution to
problem Πi is also a valid solution to any problem Πj for j ≤ i.

Note that, for the 21
2 -coloring problem presented in Section 5.1, the label se-

quence in its path-inflexible decomposition consists of sets Σ1 and Σ2 defined in
Observations 5.2 and 5.4. The restricted 21

2 -coloring problem Π′
2 1

2
was also defined

such that it is compatible with the above definition.
Balliu et al. [5] showed that any LCL problem having only path-flexible labels is

solvable with locality O(log n) in the LOCAL model, and therefore also in the online-
LOCAL model. This holds even when the LCL problem contains path-inflexible
labels, but it has a restriction with only path-flexible labels. In particular, if such
restriction exists, then the last problem in the path-inflexible decomposition is such
a restriction. In this case, Balliu et al. call the last problem Πk a certificate for
O(log n) solvability for the original problem.

If, on the other hand, the last problem Πk in the path-inflexible decomposition is
an empty problem, then the problem requires locality Ω(n1/k) in the LOCAL model.
I prove that this lower bound holds also in the online-LOCAL model.

In the proof of Theorem 1.2, I use layered trees. Recall their definitions from
Section 5.1:

46

st

t

s

t

s

Figure 10: Examples of layered trees. From left to right: T x
0 for any x, T 5

1 , and T 3
2 .

The lightest nodes belong to layer 0, the medium purple to layer 1, and the darkest
nodes to layer 2. The nodes marked with s are the roots, and the nodes marked with
t are the connector nodes. Note that in tree T x

0 these are the same node.

Definition 5.7 (Layered tree [5]). For each natural number constant x, define a
family T x

k of layered trees recursively as follows:

• T x
0 is a single node.

• T x
k for k ≥ 1 is defined as T x

k = ⊕xT x
k−1.

The recursive definition gives a natural notion of layer for each node: the layer of
a node is the index of the tree in which the node is first present. For example, the
leaves always belong to layer 0 and the root belongs to the highest layer.

Figure 10 shows three examples of layered trees for different layer counts and path
lengths.

The structure of the layered tree has some nice properties that are taken advantage
of in the proof of Theorem 1.2.

Observation 5.10. For every node v of tree T x
k belonging to layer i > 1, there exists

some other node u in the subtree rooted at v such that the layer of u is i − 1 and the
distance between u and v is at least x.

This holds despite the fact that tree T x
k has only a polynomial number of nodes,

as formalized in the observation below:

Observation 5.11. Let T x
k be a k-layer layered tree with path length x. Then tree T x

k

has O(xk) nodes.

To see why these observations are useful, consider the case where x is larger than
the locality of the online-LOCAL algorithm. Based on the former observation, the
algorithm gets no information about node u when shown node v. This allows the

47

adversary to change the structure of the graph near node u even after the algorithm
has already decided the label for node v. This can then be used to alter the distance
between two nodes the algorithm has already labeled, like in the example.

On the other hand, the latter observation states that the size of the tree is only
polynomial. As the Theorem 1.2 concerns a separation between polynomial and
sub-polynomial locality, this allows the construction of layered trees with arbitrarily
large x compared to the locality of the algorithm, as long as the layer count k is
small enough.

With the help of these observations, it is possible to prove Theorem 1.2:

Proof of Theorem 1.2. Let Π = (δ, Σ, C) be an LCL problem. Let the sequence of
problems (Π0, . . . , Πk) and the sequence of labels (Σ1, . . . , Σk) be the path-inflexible
decomposition of problem Π. If problem Πk is non-empty, then problem Π can be
solved with locality O(log n) in the LOCAL model [5], and therefore also in the
online-LOCAL model. Hence from now onwards, assume that the problem Πk is
an empty problem. Assume also that there existed an online-LOCAL algorithm A
solving Π with locality T (n) = o(n1/k). Note that here the k in the exponent is the
same as the number of label sets in the path-inflexible decomposition of Π.

The idea of the proof is following: The adversary uses algorithm A to construct an
input instance GA on which the algorithm fails. The adversary starts by constructing
many copies of tree T x

k and uses algorithm A to label one layer-k node on each of
them. Every label the algorithm uses belongs to some set Σi. The adversary puts all
trees having a node with a label from set Σi to collection Ci.

The adversary repeatedly combines two trees from collection Ci, using a con-
struction similar to what was shown in the example in Section 5.1, to get a new tree
belonging to some collection Cj for j < i. Repeating this sufficiently many times,
the adversary constructs two trees with labels belonging to set Σ1. Recall that set Σ1
is the set of are path-inflexible labels in the original problem Π. The adversary then
combines these trees in such a way that no valid labeling exists for the resulting tree,
showing that algorithm A must fail to solve the problem. Therefore an algorithm
with locality T (n) = o(n1/k) cannot exist.

This division of trees into collections Ci is not dissimilar to what was done
in the example in Section 5.1. In the example, the path-inflexible decomposition
of the 21

2 -coloring problem contained only two sets of labels: Σ1 and Σ2. In the
general case, the path-inflexible decomposition can divide the set of labels into more
than two partitions. Therefore, more structured approach to combining trees than
just enumerating cases is needed. In particular, the combining of trees in step 4
corresponds to case II in the example. The final step 5, where two trees are combined
to arrive at the contradiction, corresponds to cases I and III in the example.

The adversary constructs a failing input instance GA in the following way:

1. The adversary constructs 2k copies of tree T x
k with a sufficiently large constant

parameter x ≫ 2T (n).
By Observation 5.11, each of copy of T x

k has O(xk) nodes. The number of
constructed trees is a constant dependent only on k (a constant determined by

48

problem Π), and hence the total number of nodes in all trees is O(xk). This,
combined with the assumption that the locality of A is T (n) = o(n1/k), implies
that there exists some sufficiently large x.

2. For each copy of T x
k , the adversary reveals the center node on the core path to

algorithm A. The algorithm must commit a label for the center node without
seeing the root or the connector node of the tree, that is the endpoints of the
core path. Hence the algorithm does not know how the trees are connected to
each other. The adversary can use this to combine trees without the algorithm
noticing.

3. The adversary divides the trees into collections C1, . . . , Ck based on the label
produced by the algorithm for each tree: If the algorithm produced label σ for
the center node of tree G such that σ ∈ Σi, then the adversary puts tree G
into collection Ci. In other words, the adversary uses the index of set Σi ∋ σ
to decide the index of collection Ci.
There are four properties that hold for every tree G in collection Ci:

(a) There exists a node v in tree G such that the label of v belongs to set Σi.
(b) The algorithm has not committed a label for any node whose layer is less

than i.
(c) The algorithm has not seen the root sG nor the connector node tG of G.
(d) The layer of the connector tG of G is at least i.

All of these hold trivially for the initial trees: The layer of the center nodes,
the roots and the connector nodes is always k. The algorithm has committed
labels only for the center nodes. The algorithm has not seen the whole core
path because the value of parameter x has been chosen to be larger than the
diameter of visibility of the algorithm.

4. The adversary iteratively combines two trees from collection Ci into a tree of
some other collection Cj for j < i. This step corresponds to case II in the
example in Section 5.1.
The combination of trees proceeds as follows: Consider two trees A and B
from collection Ci. By the construction of Ci, there exist nodes vA and vB in
trees A and B, respectively, such that the labels of nodes vA and vB belong to
set Σi. Moreover, the layers of vA and vB are at least i.
There are four different ways in which trees A and B can be combined:

(a) The root sB of B is identified with the connector node tA of A.
(b) The root sA of A is identified with the connector node tB of B.
(c) The root sB of B is made a child of the connector node tA of A.
(d) The root sA of A is made a child of the connector node tB of B.

Note that the adversary could choose any one of these combinations without
the algorithm knowing which one it chose. This is because the algorithm has

49

not seen the roots sA and sB or the connector nodes tA and tB of trees A and
B, and hence the adversary can change the structure of the graph in their
neighborhoods freely.
Among these four combinations, the adversary chooses one for which there
exists no valid labeling for problem Πi−1. Such tree must exist by Lemma 3.27.
In particular, no valid labeling exists for the nodes and their children on the
path connecting nodes vA and vB. Call the resulting tree R. Any attempt to
label the nodes and their children on the path between nodes vA and vB in
tree R according to problem Πi−1 must fail.
Once tree R is constructed, the adversary makes algorithm A commit labels for
all nodes, as well as their children, on the path between vA and vB in R. Note
that all of these nodes belong to a layer whose index is at least i − 1. By the
choice of R, the algorithm cannot label all nodes using only labels present on
problem Πi−1. Hence there must exist a node v on the path between vA and vB

such that it and its children do not form a valid configuration in problem Πi−1.
This is possible only if either v or at least one of its children has label σ ∈ Σj

for some j < i. Denote that node by v′.
By Observation 5.10, there exists a layer-j node u in the subtree rooted at
node v such that the distance between v and u is at least x. Hence the distance
between v′ and u is at least x − 1 > T (n). This means that the algorithm has
not seen node u yet. Make node u the connector node tR of tree R.
With this construction, it is easy to check that tree R fulfills all properties of
a tree of collection Cj, as described in step 3. Hence the adversary can add
tree R to collection Cj and remove trees A and B from collection Ci. The
adversary repeats this step until collection C1 contains at least two trees, at
which point the adversary moves to the next step and forces the algorithm to
fail.

5. In this last step, the adversary forces the algorithm to fail. This step corresponds
to cases I and III in the example in Section 5.1.
The adversary does this by taking two trees A and B from collection C1. By
the construction of collection C1, there exists nodes vA and vB in trees A and
B with labels σA and σB from set Σ1, respectively. Recall that set Σ1 is the set
of path-inflexible labels in problem Π0 = Π, and hence the label pair (σA, σB)
is a path-inflexible pair of Π.
The adversary combines trees A and B in a way that is similar to the previous
step. As the result, the adversary gets tree R. This time, there does not exist
a valid labeling for the original problem Π0 = Π in tree R. Hence, when the
adversary uses algorithm A to label all nodes of tree R, the algorithm must
fail. Therefore this is the tree GA which the adversary aimed to construct.

As the adversary can force algorithm A to fail, it can be concluded that such
algorithm cannot exist. The only technical requirement of algorithm A was that it

50

has locality T (n) = o(n1/k). Hence problem Π must require locality Ω(n1/k) to be
solved, even in the online-LOCAL model.

As a final remark, the number of trees the adversary constructs in step 1 is
chosen to be sufficiently large. In particular, even in the worst case where all trees
initially belong to collection Ck, there are enough trees to get at least two trees into
collection C1.

This concludes the proof of Theorem 1.2.

In this section, I have shown that any LCL problem whose path-inflexible de-
composition ends in an empty problem requires locality nΩ(1) in the online-LOCAL
model. This matches the lower bound Balliu et al. [5] showed for the LOCAL model.
Hence the problems requiring polynomial locality in the online-LOCAL model are
exactly the same problems which require polynomial locality in the LOCAL model.
This completes the first half of the classification of LCL problems in rooted trees in
the online-LOCAL model.

5.3 Equivalence in sub-logarithmic region
In this section, I classify the rest of the LCL problems in rooted trees. I show that
any online-LOCAL algorithm A solving an LCL problem Π with locality o(log)
can be sped up to an O(log∗ n)-locality LOCAL algorithm. Observation 3.12 then
implies that the there exists an online-LOCAL algorithm solving problem Π with
locality O(1). This, in turn, implies that there are no problems with locality ω(1)
and o(log n) in the online-LOCAL model. Moreover, the problems that are solvable
with locality O(1) in the online-LOCAL model are exactly the same problems that
are solvable in O(log∗ n) locality in the LOCAL model.

I show the gap by extending the previous results of Balliu et al. [5] to work also in
the online-LOCAL model. In particular, I provide a construction for a certificate for
O(log∗ n) solvability for any LCL problem having a locality-o(log n) online-LOCAL
algorithm.

I make use of the coprime certificate for O(log∗ n) solvability that was defined
by Balliu et al. [5]. The high-level idea of the certificate is to construct a set of
balanced, labeled trees such that each tree has the same set of labels at the leaves,
and different labels at the roots. The certificate can be used to label a rooted tree by
dividing the tree into approximately constant-height subtrees, labeling the leaves of
each subtree by these labels, and then using the certificate to complete the labeling
between the leaves of two subtrees. Figure 11 shows an example certificate and how
that can be used to 3-color a tree.

Formally, the coprime certificate for O(log∗ n) solvability is defined as follows:

Definition 5.12 (Coprime certificate for O(log∗ n) solvability [5]). Let Π = (δ, Σ, C)
be an LCL problem. A coprime certificate for O(log∗ n) solvability of Π consists of
labels ΣT = {σ1, . . . , σt} ⊆ Σ, a depth pair (d1, d2) and a pair of sequences T 1 and
T 2 of t labeled trees such that the following conditions hold:

1. Depths d1 and d2 are coprime.

51

T 1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

3

1 1

3

2 2

,

2

3

1 1

3

2 2

,

3

2

1 1

1

2 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

T 2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

2

3

1 2

3

2 2

3

1

3 2

1

3 3

,

2

1

3

1 2

3

2 2

3

1

3 2

2

3 3

,

3

2

3

1 2

1

2 2

2

1

3 2

1

3 3

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

1 1 2 2

1 2 2 2 3 2 3 3

1 1 2 2

1

3

1 1

3

2 2

1

3

1 2

3

2 2

3

1

3 2

2

3 3

2

1 1

1

2 2

Figure 11: A certificate for O(log∗ n) solvability of 3-coloring and an example on
how it can be used to label a tree. The certificate consists of two sequences of trees,
T 1 and T 2. For every color, there exists a tree with root labeled with that color
in both sequences. The leaves of each tree in both sequences are labeled with the
same labels in the same order. On the bottom left, the algorithm has shattered a
large tree into subtrees with heights 2 and 3, and it has labeled the leaves of those
subtrees with the leaf labels of sequences T 1 and T 2. On the right, the algorithm
has filled in the labels for rest of the trees by copying the intermediate labels from
sequences T 1 and T 2.

52

2. Each tree of T 1 (resp. T 2) is a complete δ-ary tree of depth d1 ≥ 1 (resp. d2 ≥ 1).

3. Each tree is labeled by labels from Σ correctly according to problem Π.

4. Let T̄ 1
i (resp. T̄ 2

i) be the tree obtained by starting from T 1
i (resp. T 2

i) and
removing the labels of all non-leaf nodes. It must hold that all trees T̄ 1

i

(resp. T̄ 2
i) are isomorphic, preserving the labeling. All the labels of the leaves

of T̄ 1
i (resp. T̄ 2

i) must be from set ΣT .

5. The root of tree T 1
i (resp. T 2

i) is labeled with label σi.
Balliu et al. [5] also define a uniform certificate for O(log∗ n) solvability, but it

is not needed for the purposes of this thesis. Hence, when using a certificate for
O(log∗ n) solvability, I refer to coprime certificate for O(log∗ n) solvability.

The proof of Theorem 1.3 is based on constructing a certificate for O(log∗ n)
solvability using a sufficiently fast online-LOCAL algorithm as a black box. The
following lemma formalizes this idea:
Lemma 5.13. Let A be an online-LOCAL algorithm with locality T (n) = o(log n)
solving an LCL problem Π. Then there exists a certificate for O(log∗ n) solvability
for problem Π. Moreover, algorithm A can be used to construct the certificate.

The high-level idea of the certificate construction is to create many large trees
and use the online-LOCAL algorithm to label the nodes in the middle of the trees.
The trees need to be sufficiently large such that the algorithm does not get to see
the roots or the leaves of the trees. Even though it has not been specified how the
trees are connected to each other, the execution of the algorithm in the middle of
these trees is well defined. In particular, the algorithm must be able to complete
the labeling, no matter how the trees are later connected to each other. This allows
the adversary to connect the trees in different ways to produce different parts of the
certificate.

The following definition formalizes the concept of “nodes in the middle of the
tree” as middle nodes:
Definition 5.14 (Middle nodes of a rooted tree). Let T be a complete, balanced
δ-ary rooted tree with depth 2d. The middle nodes of T are the nodes that are at
distance d from the root and the leaves.

With this definition, it is possible to prove the above lemma:

Proof of Lemma 5.13. Let Π = (δ, Σ, C) be an LCL problem, and let A be an
online-LOCAL algorithm solving problem Π with locality T (n) = o(log n).

A certificate for O(log∗ n) solvability of Π can be constructed as follows:
1. Let n be large enough to satisfy

(δT (n)+2 + |Σ|)(δ2T (n)+3 − 1) ≪ n.

Such n must exist because T (n) = o(log n) by assumption.
Construct δT (n)+2 + |Σ| complete δ-ary rooted trees, each with depth 2T (n) + 2.
Each one of the trees has δ2T (n)+3 − 1 nodes.

53

2. Use algorithm A to label the middle nodes of each tree. Note that at this
point, it has not been specified how the trees are connected to each other.
Nevertheless, the execution of the algorithm is well-defined. This is because
the depth of the tree is larger than the diameter of visibility of algorithm, and
hence the algorithm does not see the roots or the leaves of the trees.
Let ΣT = {σ1, σ2, . . . , σt} be the set of labels that the algorithm used to label
the middle nodes of the trees.

3. Divide the trees into two sets L and U as follows: Consider each tree in turn.
If there exists a labeled middle node in the tree such that no tree in set U has
a node with that label, add the tree to set U . Otherwise add the tree to set L.
In other words, the trees are divided into sets L and U such that for every
label used by algorithm A to label a middle node of some tree, there exists a
tree in U that has a middle node labeled with that label. The construction
ensures that the size of set U remains small. In particular, the size of set U is
at most |Σ|. This is because for each label, a tree is added to set U at most
once. This also means that the size of set L is at least δT (n)+2.
Give the trees of L a consistent ordering.

4. The sets L and U can now be used to construct the individual trees of the
sequences T 1 and T 2 of the certificate.
Consider each label σi in set ΣT in turn. There exists a tree in set U that has
a node labeled with σi by the construction of the set. Let that tree be U , and
let the node having label σi be v. Consider the subtree of U rooted at v, and
denote that by Uv. The tree Uv has δT (n)+1 leaves. Identify the leaves with the
roots of the first δT (n)+1 trees of set L.
Now the root of subtree Uv has label σi, and the nodes at depth 2T (n) + 2
have also been labeled with labels from set ΣT . Algorithm A can now be used
to label all the nodes in between. The result is that the depth-(2T (n) + 2)
subtree of Uv is a complete labeled tree with depth 2T (n) + 2. Let that be
tree T 1

i of sequence T 1.
The trees of for sequence T 2 can be constructed in an analogous way. The
only difference is that instead of identifying the roots of the first δT (n)+1 trees
of L with the leaves of subtree Uv, the first δT (n)+2 trees of L are made the
children of those leaves. Again, algorithm A can be used to label all the nodes
in between. Now the depth-(2T (n) + 3) subtree of Uv can be made tree T 2

i of
sequence T 2.

It is easy to verify that the sequences T 1 and T 2 constructed in this way actually
form a valid certificate for O(log∗ n) solvability for problem Π. In particular, the
depths 2T (n) + 2 and 2T (n) + 3 are coprime, the leaves of each tree in both sets are
labeled similarly using labels from set ΣT , and for every label of set ΣT , there exists
a tree in both sequences having a root labeled with that label.

54

Lemma 5.13 directly implies Theorem 1.3:

Proof of Theorem 1.3. Let Π be an LCL problem in rooted trees. There are now
two cases:

1. Problem Π is solvable with locality o(log n) in online-LOCAL. By Lemma 5.13,
it is possible to construct a certificate for O(log∗ n) solvability for Π, and hence
Π is solvable in O(log∗ n) in LOCAL.

2. Problem Π requires locality Ω(log n) in online-LOCAL. Then problem Π also
requires locality Ω(log n) in LOCAL as online-LOCAL model is at least as
strong as LOCAL.

This completes the classification of all LCL problems in rooted trees in the
online-LOCAL model.

55

6 Conclusion
In this thesis, I have shown that the LOCAL and the online-LOCAL models are
approximately equally powerful for solving LCL problems in directed paths and
rooted regular trees. Based on this result, it may seem likely that the result could
generalize to all graph classes. Unfortunately, this is not the case, as we have shown
in our manuscript [1]. In particular, we have shown that in 2-dimensional grids,
the problem of 3-coloring can be solved with locality O(log n) in the online-LOCAL
model while it requires Ω(

√
n) locality in the LOCAL model [8].

It is also known that the randomized LOCAL model is exponentially more
powerful than the deterministic LOCAL model for some LCL problems [9]. There
exist problems whose locality is Θ(log n) in the deterministic LOCAL model but
Θ(log log n) in the randomized LOCAL model. Moreover, it is known that the
sequential-LOCAL model is powerful enough to derandomize LOCAL algorithms,
and hence those problems are solvable in O(log log n) also in the deterministic
sequential-LOCAL model [13].

One interesting problem exhibiting this exponential separation between the
deterministic and randomized LOCAL models is sinkless orientation. In the sinkless
orientation problem, the edges of the graph need to be oriented such that no node is
a sink of the graph. A node is a sink if it has only incoming edges, and it is not a
leaf. What makes sinkless orientation an especially interesting problem is that it is
known to be solvable in Θ(log log log n) locality in the randomized sequential-LOCAL
model [13]. This raises the following natural question:

Question 6.1. What is the locality of the sinkless orientation problem in the
online-LOCAL model?

The two natural answers could be that the online-LOCAL model is approximately
equally powerful with the deterministic sequential-LOCAL model and therefore
the locality is Θ(log log n), or that the online-LOCAL model is powerful enough to
derandomize the sequential-LOCAL model and hence the locality is Θ(log log log n).
I think it would be surprising if there would a third answer to this question.

Chang and Pettie [10] have shown that all LCL problems in trees fall into one
of the following three complexity classes: O(log∗ n), Θ(log n) and nΩ(1). While it is
known that the complexity in the LOCAL and the online-LOCAL models differs in
the logarithmic region, I postulate that all LCL problems in trees fall into one of the
following complexity classes in both the LOCAL and online-LOCAL models:

• Problems solvable in O(log∗ n) in the LOCAL model and in O(1) in the
online-LOCAL model. In these problems, the main obstacle in the LOCAL
model is symmetry breaking, which is broken by the adversarial order in the
online-LOCAL model.

• Problems that are solvable in Θ(log n) in the LOCAL model, and that require
locality Ω(log log log n) but are solvable in O(log n) in the online-LOCAL model.
These problems are akin to the sinkless orientation and the main obstacle is
finding an irregularity in the graph, such as a leaf.

56

• Problems requiring nΩ(1) locality both in the LOCAL and in the online-LOCAL
models. These are the problems that require global coordination in both
models.

In particular, I postulate that the gap between O(log∗ n) and Ω(log n) in the LOCAL
model extends to become a gap between O(1) and Ω(log log log n) in the online-
LOCAL model. I also postulate that the gap between O(log n) and nΩ(1) in the
LOCAL model extends to the online-LOCAL model. Showing these gaps would
prove the above classification correct.

The discussion about randomized models brings up the question of how random-
ness affects the online-LOCAL model. To answer this question, it must first be
decided what the adversary knows about the randomness that the online-LOCAL
algorithm is using. In the online algorithm literature, there are three types of
adversaries [6]:

• Oblivious adversaries know nothing about the randomness that the algo-
rithm is using. Hence they need to choose all of their actions beforehand
without seeing what the algorithm does.

• Adaptive online adversaries know the choices the algorithm has made so
far, and can therefore base their future decisions on them.

• Adaptive offline adversaries also know the future values of randomness
that the algorithm is using, and can therefore make optimal decisions against
the algorithm.

The proofs for Theorems 1.2 and 1.3 are based on the adversary reacting to the
decisions of the algorithm. Hence it seems likely that randomness would not help
against adaptive adversaries in rooted trees. This leaves open one final question on
what happens against oblivious adversaries:

Question 6.2. Does randomness help solving LCL problems in rooted trees in the
online-LOCAL model against an oblivious adversary?

57

References
[1] Amirreza Akbari, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi, and

Jukka Suomela. “Online Algorithms with Lookaround”. arXiv:2109.06593 [cs]
(Feb. 15, 2022). doi: 10.48550/arXiv.2109.06593.

[2] Susanne Albers and Sebastian Schraink. “Tight Bounds for Online Coloring
of Basic Graph Classes”. Algorithmica 83.1 (Jan. 2021), pp. 337–360. doi:
10.1007/s00453-020-00759-7.

[3] Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Ra-
bie, and Jukka Suomela. “The Distributed Complexity of Locally Checkable
Problems on Paths is Decidable”. In: Proc. 38th Symposium on Principles of
Distributed Computing (PODC 2019). Toronto ON Canada: ACM, July 16,
2019, pp. 262–271. doi: 10.1145/3293611.3331606.

[4] Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus,
Dennis Olivetti, and Jukka Suomela. “Brief Announcement: Classification of
Distributed Binary Labeling Problems”. In: Proc. 39th Symposium on Principles
of Distributed Computing (PODC 2020). Virtual Event Italy: ACM, July 31,
2020, pp. 349–351. doi: 10.1145/3382734.3405703.

[5] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, Jan Studený, Jukka Suomela,
and Aleksandr Tereshchenko. “Locally Checkable Problems in Rooted Trees”.
In: Proc. 40th Symposium on Principles of Distributed Computing (PODC
2021). Virtual Event Italy: ACM, July 21, 2021, pp. 263–272. doi: 10.1145/
3465084.3467934.

[6] Shai Ben-David, Allan Borodin, Richard Karp, Gabor Tardos, and Avi Wigder-
son. “On the Power of Randomization in Online Algorithms”. Algorithmica
11.1 (Jan. 1994), pp. 2–14. doi: 10.1007/BF01294260.

[7] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lem-
piäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto. “A Lower Bound for
the Distributed Lovász Local Lemma”. In: Proc. 48th Annual Symposium on
Theory of Computing (STOC 2016). Cambridge MA USA: ACM, June 19, 2016,
pp. 479–488. doi: 10.1145/2897518.2897570.

[8] Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen,
Patric R.J. Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and
Przemysław Uznański. “LCL Problems on Grids”. In: Proc. 36th Symposium
on Principles of Distributed Computing (PODC 2017). Washington DC USA:
ACM, July 25, 2017, pp. 101–110. doi: 10.1145/3087801.3087833.

[9] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. “An Exponential Separation
between Randomized and Deterministic Complexity in the LOCAL Model”.
SIAM Journal on Computing 48.1 (Jan. 2019), pp. 122–143. doi: 10.1137/
17M1117537.

[10] Yi-Jun Chang and Seth Pettie. “A Time Hierarchy Theorem for the LOCAL
Model”. SIAM Journal on Computing 48.1 (Jan. 2019), pp. 33–69. doi: 10.
1137/17M1157957.

https://doi.org/10.48550/arXiv.2109.06593
https://doi.org/10.1007/s00453-020-00759-7
https://doi.org/10.1145/3293611.3331606
https://doi.org/10.1145/3382734.3405703
https://doi.org/10.1145/3465084.3467934
https://doi.org/10.1145/3465084.3467934
https://doi.org/10.1007/BF01294260
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1157957
https://doi.org/10.1137/17M1157957

58

[11] Yi-Jun Chang, Jan Studený, and Jukka Suomela. “Distributed Graph Problems
Through an Automata-Theoretic Lens”. In: Structural Information and Commu-
nication Complexity. Ed. by Tomasz Jurdziński and Stefan Schmid. Vol. 12810.
Series Title: Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2021, pp. 31–49. doi: 10.1007/978-3-030-79527-6_3.

[12] Richard Cole and Uzi Vishkin. “Deterministic Coin Tossing With Applications
to Optimal Parallel List Ranking”. Information and Control 70.1 (July 1986),
pp. 32–53. doi: 10.1016/S0019-9958(86)80023-7.

[13] Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. “On Derandomizing Local
Distributed Algorithms”. In: Proc. 59th Annual Symposium on Foundations
of Computer Science (FOCS 2018). Paris: IEEE, Oct. 2018, pp. 662–673. doi:
10.1109/FOCS.2018.00069.

[14] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. “On the Complexity of
Local Distributed Graph Problems”. In: Proc. 49th Annual Symposium on
Theory of Computing (STOC 2017). Montreal Canada: ACM, June 19, 2017,
pp. 784–797. doi: 10.1145/3055399.3055471.

[15] Magnus M. Halldórsson and Mario Szegedy. “Lower Bounds for Online Graph
Coloring”. Theoretical Computer Science 130.1 (Aug. 1994), pp. 163–174. doi:
10.1016/0304-3975(94)90157-0.

[16] Juho Hirvonen and Jukka Suomela. Distributed Algorithms 2020. Finland: Aalto
University, Dec. 11, 2021. 221 pp. url: https://jukkasuomela.fi/da2020/.

[17] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. 2nd ed. Boston Munich:
Addison-Wesley, 2001. 521 pp.

[18] Nathan Linial. “Locality in Distributed Graph Algorithms”. SIAM Journal on
Computing 21.1 (Feb. 1992), pp. 193–201. doi: 10.1137/0221015.

[19] Moni Naor and Larry Stockmeyer. “What Can be Computed Locally?” SIAM
Journal on Computing 24.6 (Dec. 1995), pp. 1259–1277. doi: 10 . 1137 /
S0097539793254571.

[20] Lata Narayanan. “Channel Assignment and Graph Multicoloring”. In: Wiley
Series on Parallel and Distributed Computing. Ed. by Ivan Stojmenović. New
York, USA: John Wiley & Sons, Inc., Feb. 1, 2002, pp. 71–94. doi: 10.1002/
0471224561.ch4.

[21] Dennis Olivetti. “Brief Announcement: Round Eliminator: A Tool for Automatic
Speedup Simulation”. In: Proc. 39th Symposium on Principles of Distributed
Computing (PODC 2020). Virtual Event Italy: ACM, July 31, 2020, pp. 352–
354. doi: 10.1145/3382734.3405694.

[22] Jeffrey Shallit. “The Frobenius Problem and Its Generalizations”. In: De-
velopments in Language Theory. Ed. by Masami Ito and Masafumi Toyama.
Vol. 5257. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 72–83. doi:
10.1007/978-3-540-85780-8_5.

https://doi.org/10.1007/978-3-030-79527-6_3
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1016/0304-3975(94)90157-0
https://jukkasuomela.fi/da2020/
https://doi.org/10.1137/0221015
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1002/0471224561.ch4
https://doi.org/10.1002/0471224561.ch4
https://doi.org/10.1145/3382734.3405694
https://doi.org/10.1007/978-3-540-85780-8_5

59

[23] Daniel D. Sleator and Robert E. Tarjan. “Amortized Efficiency of List Update
and Paging Rules”. Communications of the ACM 28.2 (Feb. 1985), pp. 202–208.
doi: 10.1145/2786.2793.

[24] Aleksandr Tereshchenko. “Automated Classification of Distributed Graph
Problems”. MA thesis. Aalto University, May 17, 2021. 76 pp. url: http:
//urn.fi/URN:NBN:fi:aalto-202105236941.

https://doi.org/10.1145/2786.2793
http://urn.fi/URN:NBN:fi:aalto-202105236941
http://urn.fi/URN:NBN:fi:aalto-202105236941

	Abstract
	Abstract (in Finnish)
	Acknowledgements
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Roadmap

	2 Related work
	2.1 The LOCAL model of distributed computation
	2.2 Locally checkable labeling problems
	2.3 The sequential-LOCAL model
	2.4 Online graph algorithms

	3 Definitions
	3.1 Graphs
	3.2 Automata
	3.3 Online graph algorithms
	3.4 Distributed models of computation
	3.5 The online-LOCAL model
	3.6 Locally checkable labeling problems
	3.7 LCLs as automata: path-form and path-flexibility
	3.8 Iterated logarithm

	4 Locally checkable labeling problems in directed paths
	5 Locally checkable labeling problems in rooted regular trees
	5.1 2½-coloring requires Ω(√n) locality in the online-LOCAL model
	5.2 Equivalence in super-logarithmic region
	5.3 Equivalence in sub-logarithmic region

	6 Conclusion
	References

